	```GOVERNMENT ARTS AND SCIENCE COLLEG, KOVILPATTI - 628503. (AFFILIATED TO MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI) DEPARTMENT OF MATHEMATICS STUDY E - MATERIAL CLASS : I M.SC (MATHEMATICS) SUBJECT : NUMERICAL ANALYSIS(PMAM15)```

### 1.5 Paper 5: NUMERICAL ANALYSIS

Text Book: Numerical Methods, S. Arumugam and others, Scikech(2001).
Unit I: Interpolation : Newton's Interpolation Formula - Central difference Interpolation
Lagrange's Interpolation formula - Divided differences - Newton's Divided
differences formula - Inverse Interpolation - Hermit's Interpolating Polynomial.
Chapter 7: Sections 7.1 to 7.7.
Unit II: Numerical differentiation - Derivatives using Newton's forward, backward, central difference formulae

Chapter 8: Sections 8.1 to 8.3.
Unit III: Numerical Integration-Gaussian Quadrature formula -Numerical evaluation of double integrals.
Chapter 8: Sections 8.5 to 8.7.
Unit IV: Numerical solutions of ordinary differential equations - Taylor's series Method Picard's Method - Euler's Method - Runge Kutta Method.

Chapter 10: Sections 10.1 to 10.4 .
Unit V: Predictor corrector Method - Milnes Method - Adams-Bashforth Method.
Chapter 10: Sections 10.5 to 10.7 .

Text Book:- Numerical Analys is
Numerical methods s.Arumugam and others, Scikech (2001)
unit -I :-
Interpolation:- Newton's Interpolation formula. central difference Interpolation - Lagrange's
Interpolation formula - divided differences Newton's divided differences formula -Inverse Interpolation -Hermit's Interpolating polynomial chapter 7 :- Section 7.1 to 7.7
unit - II:-
Numerical differentiation - derivates using Newton's forward, Backward central difference formula.
chapter 8 :- section 8.1 to 8.3 unit -II:-

Numerical Integration -Gaussian Quadrature formula - Numerical evaluation of double integrals
chapter $8:-8.5$ to 8.7
unit - IV :-
Numerical solutions of ordinary differential equations -Taylor's series MethodScanned by CamScanner
picard's Method - Euler's Method. Runge Kutta
Method.
chapter 10:- Sections 10.1 to 10.4 unit - $\underline{v}$ :-
predictor Corrector Method - Milnes Method.
Adams - Bashforth method.
10:- Section 10.5 to 10.7 $810+115$

Numerical Analysis
Difference operator
consider the function $f=f(x)$. Suppose we are given a table of values of the function at the pints $x_{0}, x_{1}=x_{0}+h, x_{2}=x_{0}+2 h, \ldots, x_{n}=x_{0}+n h$.
let $f\left(x_{0}\right)=y_{0}, f\left(x_{1}\right)=y_{1}, \ldots, f\left(x_{n}\right)=y_{n}$
) forward Difference operator:-

$$
\begin{aligned}
& \Delta f(x)=f(x+h)-f(x) \\
& \Delta y_{0}=y_{1}-y_{0}
\end{aligned}
$$

) Backward difference operator:-

$$
\begin{aligned}
& \nabla f(x)=f(x)-f(x-h) \\
& \nabla y_{1}=y_{1}-y_{0}
\end{aligned}
$$

1 Central difference operator:-

$$
\delta f(x)=f\left(x+\frac{h}{2}\right)-f\left(x-\frac{h}{2}\right)
$$

4) Shift operator:-

$$
E \cdot f(x)=f(x+h)
$$

5) Averaging operator:-

$$
\mu f(x)=\frac{f\left(x+\frac{h}{2}\right)-f\left(x-\frac{h}{2}\right)}{2}
$$

6) Relations between operators

$$
\begin{aligned}
& * \Delta=E-1 \quad \text { (or) } \quad E=\Delta+1 \\
& * \nabla=1-E^{-1} \\
& * \delta=E^{1 / 2}-E^{-1 / 2} \\
& * \mu=\frac{E^{1 / 2}+E^{-1 / 2}}{2} \\
& * D=\frac{1}{h} \log E
\end{aligned}
$$

pb from the forward difference table for the following data.

$x$	0	1	2	3	4
$y$	8	11	9	15	6

Soln:-

$x$	$y=f(x)$	$\Delta y_{0}$	$\Delta^{2} y_{0}$	$\Delta^{3} y_{0}$	$\Delta^{4} y_{0}$
0	8	8			
1	11	+2	-5		
2	9	-2		13	-36
3	15	6	8		
4	6	9	-15		

pb Find the missing Data.

$x$	0	1	2	3	4	5
$y$	2	6	12	20	30	$a$

Sole:-

$x$	$y=f(x)$	$\Delta y_{0}$	$\Delta^{2} y_{0}$	$\Delta^{3} y_{0}$	$\Delta^{4} y_{0}$	$\Delta^{5} y_{0}$
0	2	4				
1	6	4	2			
2	12	6	2	0		
3	20	8	2	0	0	
4	30	10	2	$0-42$	$a-42$	$a-42$
5	$a$	$a-30$	$a-40$			

$\Delta^{5} y_{0}=0$
pb prove that $E \nabla=\nabla E=\triangle$
Son:-
consider $E \nabla=E\left(1-E^{-1}\right)$

$$
=E-E E^{-1}
$$

111

$$
E \nabla=E-1 \quad\left(\because E E^{-1}=1\right]
$$

$$
\begin{aligned}
\nabla E & =\left(1-E^{-1}\right) E \\
& =E-E^{-1} E \\
\nabla E & =E-1 \quad\left(\because E E^{-1}=1\right)
\end{aligned}
$$

Hence $E \triangle=\nabla E=\triangle$
$P B$ prove that $\nabla \Delta=\delta^{2}$
proof:-

$$
\begin{aligned}
\delta^{2} & =\left(E^{1 / 2}-E^{-1 / 2}\right)^{2} \\
& =\left(E^{1 / 2}-E^{-1 / 2}\right)\left(E^{1 / 2}-E^{-1 / 2}\right) \\
& =\left(E^{1 / 2}-\frac{1}{E^{1 / 2}}\right)\left(E^{1 / 2}-\frac{1}{E^{1 / 2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{E^{\prime}-1}{E}\left(E^{\prime}-1\right)\left(\frac{E^{\prime}-1}{E^{\prime} 2}\right)\left(\frac{E^{\prime}-1}{E^{1 / 2}}\right) \\
& =\left(1-E^{-1}\right)(E-1) \\
& =\Delta \nabla
\end{aligned}
$$

L.H.S

$$
\begin{array}{rlr} 
& =\Delta \nabla & E^{-1} E^{\prime}=1 \\
\Delta \nabla & =(E-1)\left(1-E^{-1}\right) & \left(1-E^{-1}\right) \\
& =E-E E^{-1}-1+E^{-1} & \\
& =E-2+E^{-1} & a^{2}+b^{2}-2 a b \\
& =\left(E^{1 / 2}-E^{-1 / 2}\right)^{2} & (a-b)^{2} \\
& =\delta^{2} \\
\text { L.H.S } & =\text { R.H.S }
\end{array}
$$

Hence the proof.
Pb prove that $\Delta+\nabla=\frac{\Delta}{\nabla}-\frac{\nabla}{\Delta}$
proof:- $\Delta=E-1, \nabla=1-E^{-1}$

$$
\frac{\text { R.H.S }}{\Delta} \frac{\Delta}{\nabla}=\frac{\nabla}{\Delta}=\frac{E-1}{1-E^{-1}}-\frac{1-E^{-1}}{E-1}
$$

$$
\begin{aligned}
& =\frac{(E-1)^{2}-\left(1-E^{-1}\right)^{2}}{\left(1-E^{-1}\right)(E-1)} \\
= & \frac{\left[(E-1)+\left(1-E^{-1}\right)\right]\left[(E-1)+\left(1-E^{-1}\right)\right]}{E-1-1+E^{-1}} \\
= & \frac{\left[(E-1)+\left(1-E^{-1}\right)\right]\left[E-2+E^{-1}\right]}{E-2+E^{-1}}
\end{aligned}
$$

$$
\begin{aligned}
& L \cdot H \cdot S=\Delta+\nabla \\
& R \cdot H \cdot S=L \cdot H \cdot S
\end{aligned}
$$

Hence the proof.

Interpolation
Interpolation is the process of finding the most appropriate estimate for missing data. for making the most probile estimate be require the following assumption.

1) The frequency distribution is normal and not marked by sudden ups and down.
2). The changes in the series, are uniform with in a period.

Extrapolation:-
If we required information for future in which case the process of estimating the most appropriate value is known as "Extra polation".

Newton's Interpolation formulae (forward)
Let the function $y=f(x)$ take the values $y_{0}, y_{1}, \ldots y_{n}$ at the points $x_{0}, x_{1}, \ldots x_{n}$ where $x_{i}=x_{0}+i h$. Then Newton's forward interpolation polynomial is given by,

$$
\begin{aligned}
& y_{p}=y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{0}+\frac{p(p-1)(p-2)}{3!} \Delta^{3} y_{0}+\cdots+p(p-1) \\
& \cdots \frac{(p-(n-1))}{n!} \Delta^{n} y_{0}
\end{aligned}
$$

where $x=x_{0}+p h \Rightarrow p=\frac{x-x_{0}}{h}$

16 If $y(75)=246^{\circ}, y(80)=202, y(85)=118, y(90)=40$, to find $y(79)=$ ?

Son:-
Newton's forward interpolation formula is.

$$
\begin{gathered}
y_{p}=y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{0}+\frac{p(p-1)(p-2)}{3!} \Delta^{3} y_{0}+\cdots+ \\
p(p-1) \cdot \frac{(p-(n-1))}{n!} \Delta^{n} y_{0}
\end{gathered}
$$

where $x=x_{0}+p h \Rightarrow p=\frac{x-x_{0}}{h}$

$$
x_{0}=75, x=79, h=5, p=\frac{79-75}{5}=\frac{4}{5}=0.8
$$

forward difference table.

$x$	$y_{0}$	$\Delta y_{0}$	$\Delta^{2} y_{0}$	$\Delta^{3} y_{0}$
75	246			
80	202	-44		
85	118	-84		46
90	40	-78	6	

$$
\begin{aligned}
y_{p} & =246+(0.8)(-44)+\frac{(0.8)(0.8-1)}{2 \times 1}+\frac{(-40)+(0.8)(0.8-1)(0.8-2)}{3 \times 2 \times 1} \\
& =246-35.2+\frac{(-0.16)}{2}(-40)+\frac{(-0.16)(-1.2)}{63} \times 46 \\
& =246-35.2+3.2+\frac{4.416}{3} \\
& =214+\frac{4.416}{3} \\
& =\frac{642+4.416}{3} \Rightarrow \frac{646.416}{3} \Rightarrow y_{p}=215.472 \\
y_{0} .8 & =215.472
\end{aligned}
$$

Pb find the cubic polynomial which takes th following data.

$x$	0	1	2	3
$f(x)$	1	2	1	10

80010:

$$
\begin{aligned}
& x_{0}=0, x_{1}=1, x_{2}=2, x_{3}=3, h=1 \\
& P=\frac{x-x_{0}}{h}=\frac{x-0}{1}=x \\
& P=x
\end{aligned}
$$

forward difference table

$x$	$y$	$\Delta y$	$\Delta^{2} y$	$\Delta^{3} y$
0	1			
1	2	1		
2	1	-1		12
3	10	9	10	

$$
\begin{aligned}
y_{p} & =y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{0}+\frac{p(p-1)(p-2)}{3!} \Delta^{3} y_{0}+\cdots \\
& =1+x(1)+\frac{x(x-1)}{2!}(-2)+\frac{x(x-1)(x-2)}{3!}(12) \\
& =1+x+\frac{x^{2}-x}{2}(-22)+\frac{x\left(x^{2}-2 x-x+2\right)}{2}(12) \\
& =1+x-\frac{1}{2}\left(x^{2}-x\right)+2 x\left(x^{2}-3 x+2\right) \\
& =1+x-x^{2}+x+2 x^{3}-6 x^{2}+4 x \\
y_{x} & =2 x^{3}-7 x^{2}+6 x+1
\end{aligned}
$$

$19 \operatorname{lot} 108$
1)
find the following data and $f(a)$ using
Newton's forward interpolation formula.

$x$	8	10	12	14	16
$f(x)$	1000	1900	3250	5400	8950

Sols:-

$$
\begin{aligned}
& x_{0}=8, x_{1}=10, x_{2}=12, x_{3}=14, x_{4}=16 \\
& p=\frac{x-x_{0}}{h}=\frac{9-8}{9}=\frac{1}{2}=0.5 \\
& p=0.5
\end{aligned}
$$

forward difference table

$x$	$y$	$4 y$	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$
8	1000	900			
10	1900		450	350	250
12	3250	1350	800	600	
14	5400	2150	1400		
16	8950	3550			

$$
\begin{aligned}
y_{p}= & y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{0}+\frac{p(p-1)(p-2)}{3!} \Delta^{3} y_{0}+ \\
& \frac{p(p-1)(p-2)(p-3)}{4!} \Delta^{4} y_{0} \\
= & \frac{1000+(0.5)(900)+\frac{(0.5)(0.5-1)}{2!}(450)+}{3!} \\
& \frac{(0.5)(0.5-1)(0.5-2)}{3!}(350)+\frac{(0.5)(0.5-1)(0.5-2)(0.5-3}{4!} \times 25 \\
= & 1000+450 .-56.25+21.875-9.77 \\
y & =1405.8611
\end{aligned}
$$

2) find the value of $y$ at $x=21$ from following data.

$$
y_{p}=0.35817
$$

$x$	20	23	26	29
$y$	0.3420	0.3907	0.4384	0.4848

sol:-

$$
\begin{aligned}
& x_{0}=20, \quad x_{1}=23, x_{2}=26, x_{3}=29, h=3 \\
& p=\frac{x-x_{0}}{h}=\frac{21-20}{3}=\frac{1}{3}=0.3 \\
& P=0.3
\end{aligned}
$$

forward difference table

$x$	$y$	$\Delta y$	$\Delta^{2} y$	$\Delta^{3} y$
20	0.3420			
23	0.3907	0.0487	-0.001	
26	0.4384	0.0477		-0.0003
29	0.4848	0.0464	-0.0013	

$$
\begin{aligned}
y_{p}= & y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{0}+\frac{p(p-1)(p-2)}{3!} \Delta^{3} y_{0} \\
= & 0.3420+(0.3)(0.0487)+\frac{(0.3)(0.3-1)}{2!}(-0.001) \\
& +\frac{(0.3)(0.3-1)(0.3-2)}{3!}(-0.0003) \\
= & 0.3420+0.01461+\frac{(0.3)(-0.7)(-0.001)(0.3)(-0.7)(-1.7)}{2!} \\
= & 0.3420+0.01461+0.00021
\end{aligned}
$$

3) find $f(2.5)$ wing Newtons forward formula for the given

$x$	1	2	3	4	5	6
$y$	0	1	8	27	64	125

$$
\frac{6 p+3 \cdot 375}{}
$$

sole:-

$$
\begin{aligned}
& \therefore x_{0}=1, x_{1}=2, x_{2}=3, x_{2}=4, x_{4}=5, x_{5}=6, h=1 \\
& p=\frac{x-x_{0}}{h}=\frac{2.5-1}{1}=\frac{1.5}{1}=1.5 \\
& p=1.5
\end{aligned}
$$

forward difference table

$x$	$y$	$\Delta y$	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$	$\Delta^{5} y$
1	0					
2	1	1	6			
3	8	7	12	6		
4	27	19	18	6	0	0
5	64	37	24	6	0	
6	125					

$$
\begin{aligned}
y_{p} & =y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{0}+\frac{p(p-1)(p-2)}{3!} \Delta^{3} y_{0}+\frac{p(p-1) p-2)(0.3)}{4!} \\
& +\frac{p(p-1)(p-2)(p-3)}{5!} \Delta^{5} y_{0} \\
& =0+(1.5)(1)+\frac{(1.5)(1.5-1)(6)}{2!}+\frac{(1.5)(1.5-1)(1.5-2)}{3!} 6+0+1 \\
& =0+1.5+\frac{(1.5)(0.5)(6)}{2!}+\frac{(1.5)(0.5)(-0.5)(6)+0+0}{3!} \\
& =1.5+4.2 .25-0.375 \times \\
& =3.375
\end{aligned}
$$

village						
year	1941	1951	1961	1971	1981	1991
population	2500	2800	3200	3700	4350	$522 n$

Estimate the following population of the year $194_{5}$
Son:-

$$
\begin{aligned}
& \text { n:- } x_{0}=1941, x_{1}=1951, x_{2}=1961, x_{3}=1971, \\
& x_{4}=1981, x_{5}=1991, h=10 \\
& P=\frac{x-x_{0}}{h}=\frac{1945-1941}{10}=\frac{4}{10}=0.4
\end{aligned}
$$

N No wto difference table

$x$	$y$	$\Delta y$	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$	$\Delta^{5} y$
1941	2500	300				
1951	2800	400	100			
1961	3200	500	100	0	50	-25
1971	3700	650	150	50	25	
1981	4350	875	225	75		
1991	5225					

forward interpolation formula

$$
\begin{aligned}
& \begin{aligned}
& y_{p}=y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{0}+\frac{p(p-1)(p-2)}{3!} \Delta^{3} y_{0}+\frac{p(p-1)(p-2)(p-3)}{4!}+4^{4} y_{0}+p(p-1)(p-2)( \\
&=2500+(0.4)(300)(p-4) \times 10) \\
& 5!
\end{aligned} \\
& \begin{array}{l}
\left.=2500+(0.4)(300)+\frac{(0.4)(0.4-1)}{2!}(100)+40+\frac{(0.4)(0.4-1)(0.4-2)(0.4-3)}{7!}(50)+\frac{(0.40 . .60}{5!}\right) \\
=2609.36
\end{array}
\end{aligned}
$$

backward interpolation formula $\quad p=\frac{x-x_{n}}{n}=\frac{1945-199)}{10}=\frac{-46}{10}=$

$$
\begin{aligned}
& y_{p}=y_{n}+p \nabla y_{n}+\frac{p(p+1)}{2!} \nabla^{2} y_{n}+p(p+1)(p+2)(p+3) 4 \quad[p=4 \cdot 6
\end{aligned}
$$

Newton's backward interpolation formulae
Let the function $y=f(x)$ take the values $y_{0}, y_{1}, \ldots y_{n}$ at the points $x_{0}, x_{1}, \ldots x_{n}$ where $x_{i}=x_{0}+i h$. Then Newton's backward interpolation polynomial is given by,

$$
\begin{aligned}
y(x)=y_{n}+p \nabla y_{n} & +\frac{p(p+1)}{2!} \nabla^{2} y_{n}+\frac{p(p+1)(p+2)}{3!} \nabla^{3} y_{n}+\cdots \\
& +\frac{p(p+1) \cdots(p+(n-1))}{n!} \nabla^{n} y_{n}
\end{aligned}
$$

where $x=x_{n}+P h$

$$
\Rightarrow p=\frac{x-x_{n}}{h}
$$

Pb find the value of $y$ from the following data at $x=2.65$

$x$	-1	0	1	2	3
$y$	-21	6	15	12	3

Sol:- Since the value of $x(=2.65)$ near the end of the data table we use Newton's interpolation


Newton's interpolation backward

$$
\begin{aligned}
& \text { Newton's interpolation backward } \\
& y(x)=y_{n}+p \nabla y_{n}+\frac{p(p+1)}{2!} \nabla^{2} y_{n}+\frac{p(p+1)(p+2)}{3!} \nabla^{3} y_{n} \\
& \frac{p(p+1)(p+2)(p+3)}{4!} \nabla^{4} y_{n}
\end{aligned}
$$

$$
=3+(-0.35)(-9)+\frac{(-0.35)(-0.35+1)}{2!}
$$

$$
\frac{(-0.35)(-0.35+1)(-0.35+2)}{3!}(6)+
$$

$$
\frac{(-0.35)(-0.35+1)(-0.35+2)(-0.35+3)}{4!}(0)
$$

b The following data gives the point of an $z$

$$
y(2.65)=6.45712 / 1
$$

in $C$ and lead $Q$ is the temparature and $x$ is the percentage of lead. using Newton's interpolation forward backward

To find (i) $Q$ when $x=48$
(ii) $Q$ when $x=84$ back ward

$x$	40	50	60	70	80	90
$\theta$	184	204	226	250	208	304

Sols:- (i) Owhen $2=48$

$$
\begin{aligned}
& x=48, x_{0}=40, h=10, p=\frac{x-x_{0}}{h}=\frac{x-40}{10}=\frac{8}{10}=0.8 \\
& p=0.8
\end{aligned}
$$

$x$	$\theta$	$\Delta y$	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$	$\Delta^{5} y$
40	184	20				
50	204	22	2			
60	226	22	2	0		
70	250	24	2		0	0
80	276	26	2	0	0	0
90	304	28	2	0	0	

Newton's forward interpolation formula

$$
\begin{aligned}
& y_{p}= y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{0}+\frac{p(p-1)(p-2)}{3!} \Delta^{3} y_{0}+ \\
&=184+(0.8) 20+\frac{p(p-1)(p-2)(p-3)}{4!} \Delta^{4} y_{0}+\frac{p(p-1)(p-2)(p-3)(p-4)}{5!} \Delta^{5} y_{0} \\
& \neq 1 \\
&= 184+16+(0.8)(-0.2)=184+16-0.16 \\
&= 199.84 \quad \rightarrow p=x-x_{0} \\
&
\end{aligned}
$$

Newton's backward interpolation formula $\quad \rho=\frac{x-x_{0}}{n}=\frac{84-90}{10}$

$$
\begin{aligned}
y(x)= & y_{n}+p \nabla y_{n}+\frac{p(p+1)}{2!} \nabla^{2} y_{n}+\frac{p(p+1)(p+2)}{3!} \nabla^{3} y_{n}+ \\
& \frac{p(p+1)(p+2)(p+3)}{4!} \nabla^{4} y_{n}+\frac{p(p+1)(p+2)(p+3)(p+4)}{5!} \nabla^{5} y_{r} \\
= & 304+(-0.6)(28)+\frac{(-0.6)(-0.6+1)}{2!} 2+0+0+c \\
= & 304(-16.8+(-0.6)(0.4) \\
= & 304-16.8+0.24 \\
y_{(84)}= & 286.96
\end{aligned}
$$

Newton's forward Inter ... Tern
let $y=f(x)$ takes the values $y_{0}, y_{1}, \ldots y_{n}$ at the points $x_{0}, x_{1}, \ldots, x_{n}$. where $x_{i}=x_{0}+i h$. Then newton's forward interpolation polynomial is given by

$$
\begin{aligned}
& \text { given by } \\
& \begin{aligned}
y_{p}=y_{0}+p \Delta y_{0} & +\frac{p(p-1)}{2!} \Delta^{2} y_{0}+\frac{p(p-1)(p-2)}{3!} \Delta^{3} y_{0}+\cdots \\
& +\frac{p(p-1) \cdots(p-(n-1))}{n!} \Delta^{n} y_{0}
\end{aligned}
\end{aligned}
$$

where $x=x_{0}+p h \Rightarrow p=\frac{x-x_{0}}{h}$
proof:-
Let $\phi(x)$ be an interpolating polynomial of degree $n$ which represents $y=f(x)$ in

$$
x_{0} \leq x \leq x_{0}+n h
$$

$$
\begin{aligned}
& \leq x \leq x_{0}+n h . \\
& \text { Then } \phi(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{0}-h\right) \\
&
\end{aligned}
$$

$$
\begin{aligned}
& =a_{0}+a_{1}\left(x-x_{3}\left(x-x_{0}\right)\left(x-x_{0}-h\right)\left(x-x_{0}-2 h\right)+\cdots\right. \\
& \left.+a_{0}\right)\left(x-x_{0}-h\right) \therefore\left(x-x_{0}-(n-1)\right.
\end{aligned}
$$

$$
\begin{align*}
& \ldots+a_{n}\left(x-x_{0}\right)\left(x-x_{0}-h\right) \cdots\left(x-x_{0}-(n-1)\right.
\end{align*}
$$

when $x=x_{0}, \phi\left(x_{0}\right)=f\left(x_{0}\right)=y_{0}$
from (1), $\phi\left(x_{0}\right)=a_{0}$

$$
\Rightarrow y_{0}=a_{0}
$$

when $x=x_{0}+h, \phi\left(x_{0}+h\right)=f\left(x_{0}+h\right)=f\left(x_{1}\right)=y_{1}$
from (1), $\phi\left(x_{0}+h\right)=a_{0}+a_{1}\left(x_{0}+h-x_{0}\right)$

$$
\begin{aligned}
y_{1} & =a_{0}+a_{1} h \\
y_{1} & =y_{0}+a_{1} h\left[\cdot y_{0}=a_{0}\right] \\
y_{1}-y_{0} & =a_{1} h \Rightarrow a_{0}=\frac{y_{1}-y_{0}}{h}=\frac{\Delta y_{0}}{h}
\end{aligned}
$$

Scanned by CamScanner

$$
\therefore n_{1}=\frac{\Delta y_{0}}{h}
$$

when $x=x_{0}+2 h, \phi\left(x_{0}+2 h\right)=f\left(x_{0}+2 h\right)=f\left(x_{2}\right)=y_{2}$
from (1).

$$
\begin{aligned}
& \phi\left(x_{0}+2 h\right)=a_{0}+a_{1}\left(x_{0}+2 h-x_{0}\right)+a_{2}\left(x_{0}+2 h-x_{0}\right) \\
& \quad\left(x_{0}+2 h-x_{0}-h\right) \\
& y_{2}=a_{0}+a_{1} 2 h+a_{2}(2 h)(h) \\
&=a_{0}+\frac{\Delta y_{0}}{h}(2 h)+a_{2} 2 h^{2} \\
& 2 a 2 h^{2}=a_{0}-2 \Delta y_{0}+y_{2} \quad\left[\because a_{0}=y_{0} ; f\left(x_{2}\right)=y_{2}\right] \\
& 2 a 2 h^{2}=y_{2}-y_{0}-2\left(y_{1}-y_{0}\right) \\
&=y_{2}-y_{0}-2 y_{1}+2 y_{0} \\
&=y_{2}-2 y_{1}+y_{0} \\
&=\left(y_{2}-y_{1}\right)-y_{1}+y_{0} \\
&=\Delta y_{1}-\left(y_{1}-y_{0}\right) \\
&=\Delta y_{1}-\Delta y_{0} \\
&=\Delta\left(y_{1}-y_{0}\right) \\
& a_{2}=\frac{\Delta y_{0}}{2!y_{0}^{2}}
\end{aligned}
$$

$u^{1 y}$

$$
\text { we get } a_{3}=\frac{\Delta^{3} y_{0}}{3!h^{3}}
$$

$$
a_{n}=\frac{\Delta^{n} y_{0}}{n!h^{n}}
$$

$$
\phi(x)=y_{0}+\left(x-x_{0}\right) \frac{\Delta y_{0}}{h}+\left(x-x_{0}\right)\left(x-x_{0}-h\right) \frac{\Delta^{2} y_{0}}{2 h^{2}}+\cdots+
$$

$$
\left(x-x_{0}\right)\left(x-x_{0}-h\right) \cdots\left(x-x_{0}-(n-1) h\right) \frac{\Delta^{n} y_{0}}{n!h^{n}}
$$

Since $\phi(x)$ is the interpolating polynomial which represents $y=f(x)$. Then $\phi(x)$ can be written as $y$,
$y_{p} \quad y_{p}=y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{0}+\frac{p(p-1)(p-2)}{3!} \Delta^{3} y_{0}+\cdots+$

$$
\frac{p(p-1)(p-2) \cdots(p-(n-1))}{n!} \Delta^{n} y_{n}
$$

where $x=x_{0}+P h \Rightarrow P=\frac{x-x_{0}}{h}$
Hence the proof.
201001/8 Necoton's interpolation backward formula
Let the function $y=f(x)$ take the values $y_{0}, y_{1}, \ldots y_{n}$ at the points $x_{0}, x_{1}, \ldots x_{n}$ where $x_{i}=x_{0}+i h$.

Then newton's backward interpolation polynomial is given by,

$$
\begin{array}{r}
y(x)=y_{n}+p \nabla y_{n}+\frac{p(p+1)}{2!} \nabla^{2} y_{n}+\frac{p(p+1)(p+2)}{3!} \nabla^{3} y_{n}+\cdots+ \\
\frac{p(p+1) \cdots(p+(n-1))}{n!} \nabla^{n} y_{n}
\end{array}
$$

where $x=x_{n}+p h$

$$
p=\frac{x-x_{n}}{h}
$$

proof:-
Let $\phi(x)$ be an interpolating polynomial of degree $n$ which represents $y=f(x)$ in $x_{0} \leq x \leq x_{0}+n h$.
Then,

$$
\begin{align*}
& \text { Then, } \\
& \phi(x)=a_{0}+a_{1}\left(x-x_{n}\right)+a_{2}\left(x-x_{n}\right)\left(x-x_{n-1}\right)+\cdots+  \tag{1}\\
& a_{n}\left(x-x_{n}\right)\left(x-x_{n-1}\right) \cdots\left(x-x_{1}\right)-\text { (1) }
\end{align*}
$$

when $x=x_{n} \quad \phi\left(x_{n}\right)=a_{0}=f\left(x_{n}\right)=y_{n}$

$$
\text { from (1): } a_{0}=y_{n}
$$

when $x=x_{n-1} \quad \phi\left(x_{n-1}\right)=f\left(x_{n-1}\right)=y_{n-1}$
from (1),

$$
\begin{aligned}
\phi\left(x_{n-1}\right) & =a_{0}+a\left(x_{n-1}-x_{n}\right)+a_{2}(0) \\
y_{n-1} & =y_{n}+a_{1}(h) \quad\left(\because x_{n-1}-x_{n}=-h, a_{0}=y_{n}\right) \\
a_{1} & =\frac{y_{n-1}-y_{0}}{-h} \\
& =\frac{y_{n}-y_{n-1}}{h} \\
a_{1} & =\frac{\nabla y_{n}}{1!h}
\end{aligned}
$$

when $x=x_{n-2}, \phi\left(x_{n-2}\right)=y_{n-2}$

$$
\begin{aligned}
\text { from (1) } \Rightarrow & \phi\left(x_{n-2}\right)=a_{0}+a_{1}\left(x_{n-2}-x_{n}\right)+ \\
& +a_{2}\left(x_{n-2}-x_{n}\right)\left(x_{n-2}-x_{n}-1\right) \\
& +a_{3}\left(x_{n-2}-x_{n}\right)\left(x_{n-2}-x_{n-1}\right)\left(x_{n-2}-x_{n-2}\right) \\
y_{n-2} & a_{0}+a_{1}\left(x_{n-2}-x_{n}\right)+a_{2}\left(x_{n-2}-x_{n}\right)\left(x_{n-2}-x_{n-1}\right) \\
= & y_{n}+a_{1}(-2 h)+a_{2}(-2 h)(-h) \\
= & y_{n-2}-2 a_{1} h-2 a_{2} h^{2} \\
= & y_{n-2}-y_{n}+2 \frac{\nabla y_{n}}{k} \times k \\
2 a h^{2} & y_{n-2}-y_{n}+2 \nabla y_{n} \\
= & y_{n-2}-y_{n}+2\left(y_{n}-y_{n-1}\right) \\
= & y_{n-2}-y_{n}+2 y_{n-2} y_{n-1} \\
= & y_{n-2}+y_{n}-2 y_{n-1} \\
= & y_{n-2}+y_{n}-y_{n-1}-y_{n-1} \\
= & y_{n-2}-y_{n-1}+y_{n}-y_{n-1} \\
= & -\left[y_{n-1}-y_{n-2}\right]+y_{n}-y_{n-1} \\
= & -\nabla y_{n-1}+\nabla y_{n} \\
= & \nabla\left(y_{n}-y_{n-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& a_{2}=\frac{\nabla^{2} y_{n}}{2!h^{2}} \\
& a_{3}=\frac{\nabla^{3} y_{n}}{3!h^{3}} \\
& \vdots \\
& a_{n}=\frac{\Delta^{n} y_{n}}{n!h^{n}}
\end{aligned}
$$

Substitude $a_{1}, a_{2}, a_{3} \ldots a_{n}$ in (1)

$$
\begin{aligned}
\phi(x)=y_{n} & +\frac{\nabla y_{n}}{\Gamma!h}\left(x-x_{n}\right)+\frac{\nabla^{2} y_{n}}{2!h^{2}}\left(x-x_{n}\right)\left(x-x_{n-1}\right) \\
& +\cdots+\frac{\nabla^{n} y_{n}}{n!h^{n}}\left(x-x_{n}\right)\left(x-x_{n}-1\right) \cdots\left(x-x_{1}\right)
\end{aligned}
$$

The gives newton's backward interpolation polynomial.

Since $\phi(x)$ is the interpolating polynomial with represent $y=f(x)$ then $\phi(x)$ can be written as, $y$

$$
\begin{aligned}
y(x)=y_{n}+p \nabla y_{n} & +\frac{p(p+1)}{2!} \nabla^{2} y_{n}+\frac{p(p+1)(p+2)}{3!} \nabla^{3} y_{n}+\cdots \\
& +\frac{p(p+1)}{n!(p+(n-1))} \nabla^{n} y_{n}
\end{aligned}
$$

where $p=\frac{x-x_{n}}{n}$
33107118
central difference interpolation formula
Here, we introduce five central difference interpolation formula Such as,
(i) Gauss forward interpolation formula
(ii) Gauss backward interpolation formula
(iii) Sterling's formula
(iv) Bessel's formula.
(v) Laplace Evertt's formula.

Consider the function $y=f(x)$ whose values of a collection of equally spaced points are given denote the middle point as $x_{0}$, show that set of equally spaced points are given below.

$$
x_{0}=3 h, x_{0}-2 h, x_{0}-h, x_{0}, x_{0}+h, x_{0}+2 h, x_{0}+3 h, \ldots
$$

Table of the points are represented as below.

$$
\begin{aligned}
& x \quad \ldots . x_{0}-3 h \quad x_{0}-2 h \quad x_{0}-h \quad x_{0} \quad x_{0}+h \quad x_{0}+2 h \quad x_{0}+3 h \ldots \\
& f(x) \ldots, y-3 \quad y-2 \quad y-1 \quad y \quad y+1 \quad y+2 \quad y+3 \ldots \\
& \begin{array}{cc}
x & f(x)=y \quad \delta y \\
x 3= & \delta^{2} y \quad \delta^{3} y \quad \delta^{4} y \quad \delta^{5} y \quad \delta^{6 / 6} \\
f(x)=y
\end{array}
\end{aligned}
$$

Difference table


The entries in the $1^{\text {st }}$ and $2^{\text {nd }}$ are same related to the operation relation is $\delta=\Delta E^{-1 / 2}$

$$
(\because f(x+h)=E)
$$

24lotlis Central difference operator is as

$$
\delta f(x)=f\left(x+\frac{h}{2}\right)-f\left(x-\frac{h}{2}\right)
$$

If $f\left(x_{i}\right)=y_{i}$, then $y_{1}-y_{0}=\delta y_{1 / 2}$

$$
\begin{aligned}
& y_{2}-y_{1}=\delta y_{3 / 2} \\
& \vdots \\
& y_{n}-y_{n-1}=\delta y_{n-1 / 2}
\end{aligned}
$$

Pb from the central difference table for the following data choosing $x=35$ as orgin.

$x$	20	25	30	35	40	45
$y$	12	15	20	24	39	$4^{2}$

son:-

$x$	$p=\frac{x-35}{5}$	$y$	$\Delta y$	$\cdot \Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$	$\Delta^{5} y$
20	$\frac{20-35}{5}=-3$	12					
25	-2	15		2			
30	-1	20	5	2		3	
35	0	27	7	5			
40	1	39	12	1		-7	
45	2	52					
40							

$$
\begin{array}{l|l|l}
\Delta y_{-3}=3 & \Delta y_{-1}=7 & \Delta y_{1}=13 \\
\mid y_{-2}=5 & \Delta y_{0}=12 &
\end{array}
$$

$$
\begin{aligned}
\Delta y_{y_{3}} & \Delta^{2} y_{-3}=2 \\
\Delta^{2} y_{-2} & =2 \\
\Delta^{2} y_{-1} & =5 \\
\Delta^{2} y_{0} & =1
\end{aligned}\left|\begin{array}{l}
\Delta^{3} y_{-3}=0 \\
\Delta^{3} y_{-2}=3 \\
\Delta^{3} y_{-1}=4
\end{array}\right| \begin{aligned}
& \Delta^{4} y_{-3}=3 \\
& \Delta^{4} y_{-2}=-7
\end{aligned} \Delta^{5} y_{-3}=-10
$$

Gauss forward interpolation formula
$W \cdot K \cdot T$ Newton's forward interpolation formula is,

$$
\begin{array}{r}
y_{p}=y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{0}+\frac{p(p-1)(p-2)}{3!} \Delta^{3} y_{0}+\cdots+\frac{p(p-1) \cdots(p-(n-1))}{n!} \\
\text { where } x=x_{0}+p h \tag{n}
\end{array}
$$

we have, $\Delta^{2} y_{0}=\Delta y_{1}-\Delta y_{0}$

$$
\begin{aligned}
& \Delta^{3} y_{-1}=\Delta^{2} y_{0}-\Delta^{2} y_{-1} \\
& \Delta^{2} y_{0}=\Delta^{2} y_{-1}+\Delta^{3} y_{-1} \\
& \Delta^{3} y_{0}=\Delta^{3} y_{-1}+\Delta^{4} y_{-1} \\
& \Delta^{4} y_{0}=\Delta^{4} y_{-1}+\Delta^{5} y_{-1} \\
& \vdots \\
& \text { Also } \Delta^{3} y_{-1}=\Delta^{3} y_{-2}=\Delta^{4} y_{-2} \\
& \Delta^{3} y_{-1}=\Delta^{3} y_{-2}+\Delta^{4} y_{-2} \\
&\left\|\|_{1}^{l y}, \Delta^{4} y_{-1}\right.=\Delta^{4} y_{-2}+\Delta^{5} y_{-2} \text { etc }
\end{aligned}
$$

Substitude these values in eqn (1).

$$
\begin{aligned}
y_{p}= & y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{0}+\frac{p(p-1)(p-2)}{3!} \Delta^{3} y_{0}+\cdots+\frac{p(p-1) \cdots(p-(n-1))}{n!} \\
= & y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!}\left(\Delta^{2} y_{-1}-\Delta^{3} y_{-1}\right)+\frac{p(p-1)(p-2)}{3!}\left(\Delta^{3} y_{-1}+\Delta^{4} y_{-1}\right)+\cdots \\
& +\frac{p(p-1) \cdots(p-(n-1))}{n!}\left(\Delta^{n} y_{-1}+\Delta^{n+1} y_{-1}\right) \cdots
\end{aligned}
$$

$$
\begin{aligned}
&= y_{0}+p \Delta y_{0}+\binom{p}{2} \Delta^{2} y_{-1}+\left(\binom{p}{2}+\binom{p}{3}\right) \Delta^{3} y_{-1}+ \\
&\left(\binom{p}{3}+\binom{p}{4}\right) \Delta^{4} y_{-1}+\left(\binom{p}{4}+\binom{p}{5}\right) \Delta^{5} y_{-1}+\cdots \\
&= y_{0}+p \Delta y_{0}+\binom{p}{2} \Delta^{2} y_{-1}+\binom{p+1}{3} \Delta^{3} y_{-1}+\binom{p+1}{4} \Delta^{4} y_{-1}+ \\
&+\binom{p+1}{5}\left[\Delta^{5} y_{-2}+\Delta^{6} y_{-2}\right]+\cdots \\
&=y_{0}+p \Delta y_{0}+\binom{p}{2} \Delta^{2} y_{-1}+\binom{p+1}{3} \Delta^{3} y_{-1}+\binom{p+1}{4}\left[\Delta^{4} y_{-2}+\Delta^{5} y_{-2}\right] \\
&= y_{0}+\binom{p}{1} \Delta y_{0}+\binom{p}{2} \Delta^{2} y_{-1}+\binom{p+1}{3} \Delta^{3} y_{-1}+\cdots \\
& y_{p}=y_{0}+\binom{p}{1} \Delta y_{0}+\binom{p}{2} \Delta^{2} y_{-1}+\binom{p+1}{3} \Delta^{3} y_{-1}+\binom{p+1}{4} \Delta^{4} y_{-2}+
\end{aligned}
$$

This formula is known as Gauss forward interpolation formula.

Pb Apply Gauss forward interpolation formula to Obtain $f(x)$ at $x=3.5$ from the table below.

$x$	2	3	4	5
$f(x)$	2.626	3.454	4.784	6986

Soln:-

$$
y_{p}=y_{0}+\binom{p}{1} \Delta y_{0}+\binom{p}{2} \Delta^{2} y_{-1}+\binom{p+1}{3} \Delta^{3} y_{-}+\binom{p+1}{4} \Delta^{p} y_{-2}+\cdots
$$

Sol:-


Gauss forward interpolation formula;

$$
\begin{aligned}
& \begin{array}{l}
y_{p}=y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{0}+\frac{(p+1) p(p-1)}{2!} \Delta^{3} y_{-1} \\
y_{8.5}=3.454+(0.5)(1.33)+\frac{(0.5)(-0.5)}{2!}(0.502)+ \\
\text { midpoint } \\
\text { so }
\end{array} \\
& =3.454+0.665-0.06275-0.023125 \\
& \\
& y_{(0.5)}=4.03312 .
\end{aligned}
$$

\$) using Gauss forward interpolation formula find $f(30)$ from the following table.

$x$	21	255	29	33	37
$f(x)$	18.4708	17.8144	17.1070	16.3432	15.5154

Soln:- $x=30, x_{0}=29,1, h=4, \quad P=\frac{x-x_{0}}{h}=\frac{30-29}{4}=$

$$
P=0.25
$$

$$
\begin{aligned}
f(30)= & y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{-1}+\frac{(p+1)(p)(p-1)}{3!} \Delta^{3} y_{-1} \\
& +\frac{(p+1)(p)(p-1)(p-2)}{4!} \Delta^{4} y_{-2}
\end{aligned}
$$

$$
\begin{aligned}
& =17.1070+(0.25)(-0.7638)+\frac{(0.25)(-0.75)}{2!}(-0.0544 \\
& \frac{+(0.25)(-0.75)(1.25)}{3!}(-0.0076)+ \\
& \frac{(1.25)(0.25)(-0.75)}{4!}(-0.0022) \\
& =17 \cdot 1070-0.19095+0.0052875+0.000296875- \\
& 0.0000375976 \\
& =16.92159 \\
& f(30) \simeq 16.9216
\end{aligned}
$$

Pb Given $f(2)=10, f(1)=8, f(0)=5, f(-1)=10$ find $f(1 / 2)$ by Gauss forward formula.
Son: $x=1 / 2=x_{0}=1 \quad h=-1, p=\frac{x-x_{0}}{h}=\frac{1 / 2-1}{-1}=\frac{0.5-1}{-1}=0.5$

$x$	$p=\frac{x-1}{-1}$	$y$	$\Delta y$	$\Delta^{2} f$	$\Delta^{3} f$
2	-1	10			
1	0	8	-2		
10	641	5	-3		
-1	2	10	5	8	

$$
\begin{align*}
& f(1 / 2)=y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{-1}+ \\
& \frac{(p+1)(p)(p-1)}{3!} \Delta^{3} y-1 \\
& =(8)+(0.5)(-3)+\frac{(0.5)(0.5-1)(-1)}{2!}+ \\
& \frac{(0.5+1)(0.5)(0.5-1)}{3!} \cdot(9) \\
& =80-1.5+\frac{(0.5)(-0.5)(-1)}{2!}+\frac{(1.5)(0.5)(-0.5)}{3!}(9) \\
& =8-1.5+\frac{0.25}{2!}+\frac{(-0.375)}{\beta 2}(\underline{x}) \\
& =8-1.5+0.125-\frac{1.125}{2} \\
& =8-1.5+0.125-0.5625 \\
& =6.0625 \\
& g(0,5)=6.0625
\end{align*}
$$

Gauss backward interpolation formula
W.K.T Newton's forward interpolation formula is,

$$
\begin{align*}
& y_{p}=y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{0}+\frac{p(p-1)(p-2)}{3!} \Delta^{3} y_{0}+\cdots \\
& +\frac{p(p-1) \cdots(p-(n-1))}{n 1} \Delta^{n} y_{0} \tag{1}
\end{align*}
$$

where $x=x_{0}+p h$
we have $\Delta y_{0}-\Delta y_{1}=\Delta^{2} y_{-1}$

$$
\begin{aligned}
\Delta y_{0} & =\Delta y_{1}+\Delta y_{-1} \\
\left\|\|^{1 y} \Delta^{2} y_{0}\right. & =\Delta^{2} y_{-1}+\Delta^{3} y_{-1} \\
\Delta^{3} y_{0} & =\Delta^{3} y_{-2}+\Delta^{4} y_{-2} \\
\Delta^{4} y_{-1} & =\Delta^{4} y_{-2}+\Delta^{5} y_{-2}
\end{aligned}
$$

substitude these values in eqn (1)

$$
\begin{aligned}
& (1) \Rightarrow y_{p}+p\left(\Delta y_{-1}+\Delta^{2} y_{-1}\right)+\frac{p(p-1)}{2!}\left(\Delta^{2} y_{-1}+\Delta^{3} y_{-1}\right)+ \\
& \quad \frac{p(p-1)(p-2)}{3!}\left(\Delta^{3} y_{-2}+\Delta^{4} y_{-2}\right)+\cdots \\
& =y_{0}+\binom{p}{1}\left(\Delta y_{-1}+\Delta^{2} y_{-1}\right)+\binom{p}{2}\left(\Delta_{y_{-1}}^{2}+\Delta_{y_{-1}}^{3}\right)+\binom{p}{3}\left(\Delta^{3} y_{-2}+\Delta_{y_{-2}}^{3}\right)+ \\
& = \\
& \left.\left.y_{0}+\binom{p}{1} \Delta y_{-1}+\left(\binom{p}{1}+\binom{p}{2} \Delta^{2} y_{-1}+\binom{p}{2}+\binom{p}{3}\right) \Delta^{3} y_{-2}+\binom{p}{3}+\begin{array}{l}
p \\
4
\end{array}\right)\right) \Delta_{y_{-2}}^{4} \\
& y_{p}=y_{0}+\binom{p}{1} \Delta y_{-1}+\binom{p+1}{2} \Delta^{2} y_{-1}+\binom{p+1}{3} \Delta^{3}+\binom{p+2}{4} \Delta_{-2}^{4} y_{-2}+\cdots
\end{aligned}
$$

$\frac{1188}{\text { Pb }}$ Using Gauss backward interpolation formula find $\sin 45^{\circ}$ from the following data.

$x^{\circ}$	20	30	40	50	60	70
$\sin x^{\circ}=y$	0.342	0.502	0.642	0.766	0.866	0.939

$$
\begin{aligned}
& \text { Soln: } x=45^{\circ}, x_{0}=50, h=10, p=\frac{45-50}{10}=-0.5 \\
& \begin{aligned}
y_{p} & =y_{0}+p \Psi y_{-1}+\frac{p(p-1)}{2!} y_{-1}^{2}+\frac{(p+1) p(p-1)}{3!} \nabla y_{-2}+\cdots \\
= & 0.766+(-0.5)(0.124)+\frac{(0.5)(-0.5)}{2!}(-0.024) \\
& +\frac{(0.5)(0.5)(-0.5)(-1.5)(-2.5)}{5!}(0.017)
\end{aligned}
\end{aligned}
$$



$$
\begin{aligned}
&=0.766-0.062+0.003-0.005-0.0001953125- \\
& 0.00019921875
\end{aligned}
$$

P3 Apply Gauss backward interpolation formula to find $y(25)$ for the following table.

$x$	20	24	28	32
$y$	2854	3162	3544	3992

Ans: 3250.875

$$
\begin{aligned}
& x_{0}=\frac{24(o n)}{(o r)} \\
& \frac{24+28}{2}
\end{aligned}
$$

Soln:- $\quad x=25, \quad x_{0}=24, h=4$

$$
\begin{aligned}
& P=\frac{25-24}{4}=\frac{1}{4}=0.25 \\
& P=0.25
\end{aligned}
$$

$x$	$p=\frac{x-50}{10}$	$y$	$\Delta \nabla y$	$\nabla^{2} y$	$\nabla^{3} y$
20	-3	2854			
24	-2.6	3162	308	74	
28	-2.2	3544	98	66	-8
32	-1.8	3992	448		
22					
20					
20					

$$
y_{p}=y_{0}+p \nabla y_{-1}+\frac{p(p-1)}{2!} \nabla^{2} y_{-1}+\frac{(p+1)(p(p-1)}{3!} \nabla^{3} y_{-2}
$$

$$
\begin{aligned}
& =2854.3162+(0.23) \\
& \frac{+(0.25+1)(0.25)(0.25-1)}{3!}(-8) \\
& =3162+77+\frac{(0.25)(-0.75)\left(\begin{array}{l}
33 \\
66) \\
2!
\end{array}+\frac{(01.25)(0.28}{163}\right.}{1} \\
& =3232.8125 A-0.3125 \\
& =3232.5
\end{aligned}
$$

Sterling's interpolation formula
Gauss forward interpolation formula is,

$$
\begin{array}{r}
y_{p}=y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{-1}+\frac{(p+1) p(p-1)}{3!} \Delta^{3} y_{-1}+ \\
 \tag{1}\\
\frac{(p+1)(p)(p-1)(p-2)}{4!} \Delta^{4} y_{-2}+\cdots
\end{array}
$$

Gauss backward interpolation formula is,

$$
\begin{align*}
& y_{p}=y_{0}+p \nabla y_{-1}+\frac{p(p+1)}{2!} \nabla^{2} y_{-1}+\frac{(p+1) p(p-1)}{3!} \nabla^{3} y_{-2}+ \\
& \text { Taking the } \tag{2}
\end{align*}
$$

Taking the mean of (1) $\alpha$ (2)

$$
\begin{aligned}
& y_{p}=y_{0}+\frac{p}{2}\left[\Delta y_{0}+\Delta y_{-1}\right]+\frac{1}{2}\left[\frac{p(p-1)+(p+1) p}{2}\right] \Delta^{2} y_{-1}+ \\
& \frac{(p+1) p(p-1)}{3!}\left[\frac{\Delta^{3} y_{-1}^{8}+\Delta^{3} y-2}{\Delta \partial!\varepsilon 2}\right]+ \\
& \frac{(p+1) p(p-1)(p-2)}{8+4!}\left[\frac{(p+2)(p+1) p(p-1)}{4!}\right] \frac{\Delta^{4} y_{-2}}{2}+\cdots \\
& y_{p}=y_{0}+\frac{p}{2}\left[\Delta y_{0}+\Delta y_{-1}\right]+\frac{p^{2}}{2} \Delta^{2} y_{-1}+\frac{1}{2}+\frac{p\left(p^{2}-1\right)}{3!}\left[\Delta^{3} y_{1}+\Delta y_{-2}^{3}\right] \\
& +\frac{p^{2}\left(p^{2}-1\right)}{4!} y^{4} y_{-2}+\cdots
\end{aligned}
$$

This is called Stirilling formula
Note:-

1) If interpolation is desired near the begining of $15)_{4}$
$(>8)$ the table we use Newton's forward interpolation formula. Since higher order central difference not exists at the begining of the table.
2) If the interpolation is desired near the ending of the table we use Newton's backward interpolation formula.
3) Gauss farward interpolation formula is best result for $0<p<1$.
4) Gauss backward interpolation formula is best result for $-1<p<0$.
5) To find an interpolated value near the middle of the table stirilling formula gives most accurate result for $\frac{-1}{4} \leq p \leq 1 / 4$.
b) Bessel's formula and everett's formula give the most accurate result for $\frac{1}{4} \leq p \leq \frac{3}{4}$.
Pb Apply stirilling formula to find y(25) for the following data.

$x$	20	24	28	32
$y$	2854	3162	3544	3992

Soln:-

$$
\begin{gathered}
x=25, x_{0}=24, h=4 \\
P=\frac{25-24}{4}=\frac{1}{4}=0.25 \\
P=0.25
\end{gathered}
$$



Pb using Stirilling formula compute $y_{35}$ given that $y_{10}=600, y_{20}=512, y_{30}=439, y_{40}=348, y_{50}=243$ Ans:- 373

30107) 18 Bessel's formula

Gauss farward interpolation formula is. $\frac{\text { sqp }}{\left.y_{p} p\right)} \underset{!}{1}\left(y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{-1}+\frac{p(p-1)(p+1)}{3!} \Delta^{3} y_{-1}+\cdots-(1)\right.$

W畑T
$\Delta y_{0}=y_{1}-y_{0}$
\& $y_{0}=y_{1}-\Delta y_{0}$
$y_{-1}=y_{0}-\Delta y_{-1}$ loallos

$$
\begin{aligned}
& \Delta^{2} y_{-1}=\Delta^{2} y_{0}-\Delta^{3} y_{-1} \\
& y \\
& \Delta^{4} y_{-2}=\Delta^{4} y_{-1}-\Delta^{5} y_{-2}
\end{aligned}
$$

$11^{y}$
eqn(1) can be written as,

$$
\begin{aligned}
& y_{p}=\left(\frac{y_{0}}{2}+\frac{y_{0}}{2}\right)+p \Delta y_{0}+\left[\frac{1}{2} \frac{p(p-1)}{2!} \Delta^{2} y_{-1}+\frac{1}{2} \cdot \frac{p(p-1)}{2!} \Delta y_{y}^{2}+\right. \\
& \frac{1}{p}=\frac{p-2 S_{0}}{p}=\frac{0 x-x}{n}=9 \quad p \rho+\cdot \frac{P(P-1)(P p+1)}{3!} \Delta^{3} y_{-1}+\cdots \\
& =\frac{y_{0}}{2}+\frac{y_{0}}{2}+p\left(\Delta y_{0}\right)+\frac{1}{2}\left(\frac{p(p-1)}{2} \Delta^{2} y_{-1}\right)+\frac{10}{2} \frac{p(p-1)}{2}\left[\Delta y_{0}^{2}-\Delta_{c}^{3}\right. \\
& \frac{(p+1) p(p-1)}{31} \Delta^{3} y_{-1}+\cdots \\
& {\left[\Delta^{2} y_{0}^{8}-\Delta^{3} y_{-1}\right]+\frac{p(p-1)(p+1)}{3!} \Delta^{3} y_{-1}+\cdots}
\end{aligned}
$$

$$
\begin{array}{r}
=\left(\frac{y_{0}+y_{1}}{2}\right)+\left(p-\frac{1}{2}\right) \Delta y_{0}+\frac{1}{2} \frac{p(p-1)}{2!}\left[\Delta^{2} y_{-1}+\Delta^{2} y_{0}\right] \times \\
\left(\frac{p(p-1)}{2!}\right)\left(\frac{-1}{2}+\frac{p+1}{3}\right) \Delta^{3} y_{-1}+\cdots \\
y_{p}=\left(\frac{y_{0}+y_{1}}{2}\right)+\left(p-\frac{1}{2}\right) \Delta y_{0}+\frac{1}{2} \frac{p(p-1)}{2!}\left[\Delta^{2} y_{-1}+\Delta^{2} y_{0}\right] \\
\left(\frac{p(p-1)}{2!}\right)\left(\frac{-1}{2}+\frac{p+1}{3}\right) \Delta^{3} y_{-1}+\cdots \\
y_{p}=\left(\frac{y_{0}+y_{1}}{2}\right)+\left(p-\frac{1}{2}\right) \Delta y_{0}+\frac{1}{2} \frac{p(p-1)}{2!}\left[\Delta^{2} y_{-1}+\Delta^{2} y_{0}\right] \\
+ \\
+\frac{p(p-1)\left(p-\frac{1}{2}\right)}{3!} \Delta^{3} y_{-1}+\frac{(p+1) p(p-1)\left(p_{1}\right)}{4!} \\
\end{array}
$$

This called Bessel's formula.
Ph Apply Bessel's formula to find $y(25)$ for the
following table: $v^{2} \Delta-1-H^{4} \Delta=$

$x$	20	24	28	32
$y$	2854	3162	6344	3992

(w) (i )ps

Solnty $x=\frac{251}{2}, 7 x_{0}=24 \quad p=\frac{x-x_{0}}{h}=\frac{25-24}{4}=\frac{1}{4}=0:$

$$
\begin{aligned}
& y_{p}=\left(\frac{y_{0}+y_{1}}{2}\right)+\left(p-\frac{1}{2}\right) \Delta y_{0}+\frac{1}{2} \frac{p(p-1)}{2!}\left[\Delta^{2} y_{-1}+\Delta^{2} y_{0}\right]+ \\
& \begin{array}{c}
\left.\begin{array}{c}
3544 \\
=\left(\frac{p(p-1)}{2!}\left(\frac{-1}{2}+\frac{p+1}{3}\right) \cdot \Delta^{3} y-162\right. \\
2
\end{array}\right)+\left(\begin{array}{c}
\left.\left.25-\frac{1}{2}\right)(382)+\frac{1}{2} \frac{(0.25)(0.25-1)}{2!} 66+74\right)
\end{array}\right]
\end{array} \\
& +\frac{(0.25)(0.25-1)}{3!}\left(\frac{-1}{2}+\frac{(0.25+1)}{3}\right](-8) \\
& =3353+(-0.25)(382)+\frac{1}{2}\left[\left(\frac{0.1875}{2}\right)(740)+\left(\frac{-0.1815}{3!}\right)(-0.5+(177)-8\right. \\
& =3353-95.5+6.5625+0.03125(-0.083)(-8) \\
& =3250.95825 / 1
\end{aligned}
$$

Pb Apply Bessel's formula to find $y\left(\begin{array}{l}\text { (1) for the } \\ 1.95)\end{array}\right.$ following table

$x$	1.7	1.8	1.9	2.0	2.1	2.2	2.3
$f(x)$	2.979	3.144	3.283	3.391	3.463	3.997	4.491

which are (interpolation formula, can be used here which is more! cyppropriate? "Give reasons.
roll:-

$$
x=1.95\left(f+x_{0}\right)=1.9, \quad h=0.1, p=\frac{0.05}{0.1}=0.5
$$



$$
\begin{aligned}
& \left.\left.+\mu_{0} \Delta y_{p}^{1+q}=q\left(\frac{y_{0}+y_{1}}{2}\right)+\left(p^{1+q}-\frac{1}{2}\right)\right) \Delta y_{0}^{q}+\frac{1}{2}\right] \frac{p(p+1)}{2!}\left[\Delta^{2} y_{-1}\left(q+\Delta^{2} y_{0}\right]+\right.
\end{aligned}
$$

$$
\begin{aligned}
& \quad \frac{(p+1)(p)(p-1)(p-2)}{4!}\left(\frac{\Delta^{4} y_{-2}+\Delta^{4} y-1}{2}\right) \\
& =\left(\frac{3.283+3.391}{2}\right)+(0.5-0.5)(0.108)+\frac{1}{2} \frac{(0.5)(-0.14}{2!} \\
& (-0.031-0.036) \\
& =3.337+\frac{(0.5)(-0.15)}{2!1.0}\left(-0.5+\frac{1.5}{3}\right)(-0.005)+ \\
& =3.347008211
\end{aligned}
$$

3)100118 Laplace Everciett's formula:-

Gauss forward interpolation formula.

$$
\begin{align*}
& y_{p}=y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{-1}+\frac{(p+1) \rho(p-1)}{3!} \Delta^{3} y_{-1} \\
& \frac{20 \cdot 0}{1 .}=q+\binom{p+1}{4} \Delta^{4} y_{-2}+\binom{p+2}{5} \Delta^{5} y_{-2}+\ldots \tag{1}
\end{align*}
$$

Also, (x) $t^{2} \Delta(x) f^{2} \Delta \quad(x) t \Delta \quad(x)+\frac{p \cdot 1-x}{1 \cdot 0}=9 \quad x$

$$
\Delta y_{0}=y_{1}-y_{0} \quad \text { prp.s } \quad \Gamma+1
$$

$$
\Delta_{60}^{3} y_{-1}=\Delta^{2} y_{0}=\Delta^{2} y_{-10}
$$

$0 \quad \Delta^{5} y_{-2}=\Delta^{4} y_{-1}-\Delta^{4} y_{-2}$ \& $85 \cdot \varepsilon$

$$
p .1
$$

substitude these values of d differences in (1).

$$
\begin{aligned}
& \binom{p+p}{4} \Delta^{4} y_{-2}+\binom{p+2}{5}^{p}\left(\Delta^{4} y_{-1}-\Delta^{4} y_{-2} z\right)+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& +1-\mu\left[A\left(\frac{p+t^{4}}{8}\right)+\binom{p+2}{5}\right]: \Delta^{4} y_{-2}+\binom{p+2}{5} \Delta_{y_{-1}}^{4}+\cdots
\end{aligned}
$$

$$
\begin{gathered}
y_{p}=(1-p) y_{0}+p y_{1}-\left(\frac{p(p-1)(p-2)}{3!}\right) \Delta^{2} y_{-1}+\frac{(p+1) p(p-1)}{3!} \Delta^{2} y_{0} \\
\left(\frac{(p+1) p(p-1)(p-2)(p-3)}{5!}\right) \Delta^{4} y_{-2}+\frac{(p+2)(p+1) p(p-1)(p-2)}{5!} \Delta^{4}+y_{1}
\end{gathered}
$$

Change the tearms with negative signs, put $p=1-q$,

$$
\begin{aligned}
& \text { we get, } \\
& \begin{aligned}
y_{p}=q y_{0}+p y_{1}+ & +\frac{q\left(q^{2}-1\right)}{3!} \Delta^{2} y_{-1}+ \\
& +\frac{p\left(p^{2}-1\right)}{3!} \Delta^{2} y_{0}+\frac{q\left(q^{2}-1\right)}{5!} \Delta^{4} y_{-2} \\
& +\frac{p\left(p^{2}-1^{2}\right)}{5!} \Delta^{4} y_{-1}+\cdots \\
& +p y_{1}+\frac{p\left(p^{2}-1^{2}\right)}{3!} \Delta^{2} y_{0}+\frac{p\left(p^{2}-1^{2}\right)\left(p^{2}-2^{2}\right)}{5!} \Delta^{4} y_{-1}+\cdots
\end{aligned}
\end{aligned}
$$

$\therefore$ This is known as Laplace Evertt's formula.
pb Using Laplace Evertt's formula to find $y(25)$ for the following table.

$x$	20	24	28	32
$y$	2854	3162	3544	3992

d novip
Sols:-

$$
x=25 ; x_{0}=24, p=1 / 4=0.25, q=1-p=0.75
$$



$$
\begin{aligned}
& y_{p}=q y_{0}+p y_{1}+q\left(q^{2}-1\right) \Delta^{2} y_{-1}+\frac{p\left(p^{2}-1\right)}{3!} \Delta^{2} y_{0}+ \\
& (0) x-\frac{q\left(q^{2}-1\right)\left(q^{2}-2^{2}\right)}{5!} \Delta^{4} y_{-2}+\frac{p\left(p^{2}-1^{2}\right)\left(p^{2}-2^{2}\right)}{5!} \Delta^{4} y_{-} \\
& =(0.75)+(0.25)(2854)+(0.75)\left((0.75)^{2}-1\right) \\
& 3!
\end{aligned}
$$

01108/18 Legrange's Interpolation formula
Let $y_{0}, y_{1}, y_{2} \ldots y_{n}$ be the values of $f(x)$ at $x_{0}, x_{1}, x_{2} \cdots x_{n}$ (not necessarly at equal interval) Then an interpolating polynomial $\phi(x)$ for $f(x)$ is given by,

$$
\begin{gathered}
\phi(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \cdots\left(x_{0}-x_{n}\right)+}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)}= \\
+\cdots+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)}{80\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \cdots\left(x_{n}-x_{n-1)}\right.} \cdot y_{n}
\end{gathered}
$$

proof:-
Since $n$ values of $f(x)$ are given we can assume $f(x)$ to be a polynomial of degree $(n-1)$
Let $\phi(x)\left( \pm A_{0}\left(x_{1}-x_{1}\right)\left(x-x_{2}\right) \ldots_{0}\left(x-x_{n}\right)+A_{1}\left(x-x_{0}\right)\left(x-x_{2}\right) \cdots\left(x+x_{1}\right)\right.$

$$
\begin{equation*}
\text { if }+\ldots A_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x_{0} x_{n-1}\right) \tag{1}
\end{equation*}
$$

when $\left.x=x_{0}\right) 9,-y_{0}=A_{0}\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \cdots\left(x_{0}-x_{n}\right)$

II1 ; when $x=x_{1}, x_{2}, \ldots x_{n}$

$$
\begin{aligned}
& A_{1}=\frac{y_{1}}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \cdots\left(x_{1}-x_{n}\right)} \\
& A_{2}=\frac{y_{2}}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{n}\right)} \\
& \vdots \\
& A_{n}=\frac{y_{n}}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \cdots\left(x_{n}-x_{n-1}\right)}
\end{aligned}
$$

Substitude in (1) we get,

$$
\begin{aligned}
& \phi(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \cdots\left(x_{0}-x_{n}\right)}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{0}\right) \cdots\left(x_{1}-x_{n}\right)}\left(x_{1}\right) \\
& \quad+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \cdots\left(x_{n}-x_{n-1}\right)} y_{n}
\end{aligned}
$$

Since $\phi(x)$ is the interpolating polynomial which represent $f(x)$.)
Hence Legranges formula becomes,

$$
\begin{aligned}
y=f(x)= & \frac{\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)}{\left(x_{0}-x_{1}\right) \cdots\left(x_{0}-x_{n}\right)}\left(y_{0}\right)+\frac{\left(x-x_{0}\right) \cdots\left(x-x_{n}\right)}{\left(x_{1}-x_{0}\right) \cdots\left(x_{1}-x_{n}\right)}\left(y_{1}\right) \\
& +\cdots+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \cdots\left(x_{n}-x_{n-1}\right)}
\end{aligned}
$$

$03 \log 118$
P1) use lagrange's formula to find the value of $y$ at $x=$ from the following data

$x$	3	7	9	10
$y$	$x$	168	120	72
	63			

Son:-
Hence Lagrange's (formula for four set data (in $\left.\left.-\varepsilon^{x}\right)(2)-\varepsilon^{x}\right)^{+\left(\mu^{\mu}\right)}\left(\varepsilon^{x}-s^{x}\right)\left(p^{x}-s^{x}\right)(0)\left(-s^{x}\right)$

$$
\begin{aligned}
y= & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)}\left(y_{0}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)}\left(x_{1}\right) \\
& \frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)}\left(y_{2}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(y_{4}\right.}
\end{aligned}
$$

when $x=6$

$$
\begin{aligned}
y(6)= & \frac{(6-7)(6-9)(6-10)}{(3-7)(3-9)(3-10)}(168)+\frac{(6-3)(6-9)(6-10)}{(7-3)(7-9)(7-18)} \times(120, \\
& \frac{(-(6-3)(6-7)(6-10)}{(9-3)(9-7)(9-10)}(72)+\frac{(6-3)(6-7)(6-9)}{(10-3)(10-7)(10-9)}(6,3) \\
& \frac{(-4)(-3)(-4)}{(-6)(-7)(-1)(-4)}(72)+\frac{(3)(-1)(-3)}{(7)(3)(1)(-1)}(63) \\
& =12+180-72+27 \\
= & 147
\end{aligned}
$$

ph. Use lagrange's formula to fit a polynomial to the following data.

$x$	0	1	3	4
$y$	-12	0	6	12

find the value of $y$ when $x=2$
soln:-

$$
\begin{aligned}
y= & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)}\left(y_{0}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)}\left(y_{1}\right) \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)}\left(y_{2}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)}\left(y_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{(x-1)(x-3)(x-4)}{(-1)(-3)(-4)}(-12)+\frac{(x)(x-3)(x-4)}{(-1)(1-3)(1-4)}(0) \\
& +\frac{(x-0)(x-1)(x-4)}{(3)(3-1)(3-4)}(6)+\frac{(x)(x-1)(x-3)}{(4)(4-1)(4-3)}(12) \\
= & (x-1)(x-3)(x-4)-x(x-1)(x-4)+x(x-1)(x-3) \\
= & (x-1)(x-3)(x-4)-x\left(x^{2}-4 x-x+4\right)+x\left(x^{2}-3 x-x+3\right) \\
= & \left(x^{2}-3 x-x+3\right)(x-4)-\left(x^{3}-4 x^{2}-x^{2}+4 x\right)+\left(x^{3}-3 x^{2}-x^{2}+3 x\right. \\
= & \left(x^{3}-3 x^{2}-x^{2}+3 x-4 x^{2}-12 x-4 x-12\right)-\left(x^{3}-4 x^{2}-x^{2}+4 x\right)+ \\
= & \left(x^{3}-8 x^{2}-13 x-12\right)-\left(x^{3}-5 x^{2}+4 x\right)+\left(x^{3}-4 x^{2}+3 x\right) \\
= & x^{3}-8 x^{2}-13 x-12-x^{3}+5 x^{2}-4 x+x^{3}-4 x^{2}+3 x \\
= & x^{3}-7 x^{2}-18 x-12 \\
x=2 & \Rightarrow(2)^{3}-7(2)^{2}-18(2)-12=8-7(4)-36-12 \\
\Rightarrow & y(2)=4
\end{aligned}
$$

ph use lagrange's interpolation formula to find the value of $y$ when $x=10$ if the following value of $x$ \& $y$ are given


801n!-

$$
\begin{aligned}
& y=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)}( \\
& \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(s_{0}\right)\left(y_{2}\right)+\frac{\left(x-x_{0}\right)\left(x_{1}-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x\right.}}\left(\begin{array}{l}
\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)
\end{array}\right) \\
& \\
& \text { when } x=10, x_{0}=5, x_{1}=6, x_{2}=9, x_{3}=11
\end{aligned}
$$

when $x=10, x_{0}=5, x_{1}=6, x_{2}=9, x_{3}=11$

$$
\text { 2) } y_{0}=12, y_{1}=13, y_{2}=140, y_{3}=16
$$

$$
\begin{aligned}
= & \frac{(210-6)(10-9)(10-11)}{(5-6)(5-9)(5-11)}(12)+\frac{(10-5)(10-9)(10}{(6-5)(6-9)(6-1 / 1} \\
& +\frac{(10-5)(10-6)(10-11)}{(9-5)(9-6)(9-10)}(14)+\frac{(10-5)(10-6)(10-9)}{(11-5)(11-6)(11-9)(1)} \\
= & \frac{(4)(1)(-1)}{(-1)(-4)(-6)}(12)+\frac{(5)(1)(-1)}{(1)(-3)(13)+\frac{(5)(4)(-1)}{(4)(3)(-2)}} \\
y= & (4.6667
\end{aligned}
$$

Pb use lagrange's interpolation formula to find $f(x)$ when $x=0$ given the following data,

$x$	-1	-2	2	4
$f(x)$	-1	-9	11	69

Soln:- $x=0, x_{0}=-1, x_{1}=-2, x_{2}=2, x_{3}=4$

$$
y=1
$$

$$
\begin{aligned}
& y_{0}=-1, y_{1}=-9, y_{2}=11, y_{3}=69 \\
& y=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)}\left(y_{2}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} \\
& =\frac{(0+1+2)(0-2)(0-4)}{(-1+2)(-1-2)(-1-4)}(+1)+\frac{(0+1)(0-2)(0-4)}{(-2+1)(-2-2)(-2-4)} \\
& \cos \frac{(0+1)(0+2)(0-4)}{(2+1)(2+1)(2-4)}(11)+\frac{(0+1)(0+2)(0-2)}{(4+1)(4+2)(4-2)}(69) \\
& =\frac{(2)(-2)(-4)}{(1)(-3)(-5)}(-1)+\frac{(1)(-2)(-4)}{(-1)(-4)(-6)}(-9)+\frac{(1)(2)(-4)}{(3)(4)(-2)} \\
& +\frac{(1)(7)(-7)}{(5)(6)(1)}(69) \\
& 2^{2}=-26.0667+3+36667-4.6(5)(6)(1)
\end{aligned}
$$

Divided Differences
Definition:-
Let $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots\left(x_{n}, y_{n}\right)$ be a given set of $(n-1)$ points. The first divided differences are defined by the following relations

$$
\begin{aligned}
& {\left[x_{0}-x_{1}\right] }=\frac{y_{1}-y_{0}}{x_{1}-x_{0}} \\
& {\left[x_{1}-x_{2}\right] }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \vdots \\
& {\left[x_{n-1}, x_{n}\right] }=\frac{y_{n}-y_{n-1}}{x_{n}-x_{n-1}}
\end{aligned}
$$

The second, divided differences are defined by,

$$
\left[x_{0}, x_{1}, x_{2}\right]=\frac{\left[x_{1}, x_{2}\right]-\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}} \text { and so on }
$$

The third divided, differences are defined by,
j)

$$
\left[x_{0}, x_{1}, x_{2}, x_{3}\right]=\frac{\left[x_{1}, x_{2}, x_{3}\right]-\left[x_{0}, x_{1}, x_{2}\right]}{x_{3}-x_{0}} \text { and so or }
$$

The divided differences are denoted by $\&, \Phi^{2}, \uparrow^{3}, \ldots$
) The divided differences table is given below,


The divided differences are independent of the order of arrangements.

$$
\begin{aligned}
& {\left[x_{0}, x_{1}\right]=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}=\frac{y_{0}-y_{1}}{x_{0}-x_{1}}=\left[x_{1}, x_{0}\right]} \\
& \text { III, } \\
& {\left[x_{0}, x_{1}, x_{2}\right]=\left[x_{1}, x_{2}, x_{0}\right]=\left[x_{2}, x_{0}, x_{1}\right] / \|}
\end{aligned}
$$

06108118
Q
using Newton's divided difference formula evaluate $f(8)$ given that

| $x$ | 4 | 5 | 7 | 10 | 11 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 48 | 100 | 294 | 900 | 1210 | 2028 |

Soln:-


Newton's divided difference formula is

$$
\begin{aligned}
& f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right)\left[x_{0}, x_{1}\right]+\left[\left(x-x_{0}\right)\left(x-x_{1}\right)\left[x_{0}, x_{1}, x_{2}\right]+\right. \\
& {\left[\begin{array}{rl} 
& x \\
+ & \left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)\left[x_{0}, x_{1}, x_{2}, \cdots x_{n}\right.
\end{array}\right]} \\
& =48+(8-4)[4,15]+(8-4)(8-5)[4,5,7]+(8-4)(8-5) \\
& (8-7)[4,5,7,10]+(8-4)(8-5)(8-7)(8-10)(8-11) \\
& {[4,517,1,0,11,13]} \\
& =48+4(52)+(4)(3)(15)+4(3)(1)(1)+4(3)(1)(-2) 60 \\
& \text { 70 Inabonsqabmis 3ris somorstifis } \\
& =48+208+1080+2 \\
& =448 / 1
\end{aligned}
$$

Ital find the equation of the Qubic curve whim possess through the points $(4,-43),(7,83)$ (9,327) $(12,1053)$ to find newton's divided difference formula. Hence find $f(10)$
Sole:

$x$	$y$	4	$4^{2}$	$4^{3}$
$4(x)$	$-43(y)$	42		
$7(x)$	$83(y)$	42	182,216	$4502(5)$
$9\left(x_{2}\right)$	$327\left(y_{2}\right)$	122	$48-824$	
$12\left(x_{2}\right)$	$1053\left(y_{3}\right)$	242		

Newton's divided difference formula is,

$$
\begin{aligned}
f(x)= & \left.f\left(x_{0}\right)+\left(x-x_{0}\right)\right]\left[x_{0}, x_{1}\right]+\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x_{0}, x_{1}, x_{1}\right]+ \\
& \left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \\
= & (-43)+\left(10-(04)\left[4 x^{2}-7\right]+(10-4)(10-7)(417,9]+\right. \\
& (10-4)(10-7)(10-9)(4,7,9,12] \\
= & -43+(6)(42)+(6)(3)(16)+(6)(3)(1)(1) \\
= & -43+252+288+18 \\
= & 515
\end{aligned}
$$

Find the divided difference table for the followir data.

$x$	-1	0	2	4	5
$y$	0	1	9	65	126

Solo:


091081 is Inverse interpolation
The process of estimating the value of $x$ for some value of $y$ which is not in the table is Called inverse interpolation.
There are two types are,

1) Lagrange's method
2) Interative method.

Lagranges method
Interchanging the variables $x$ and $y$ is lagranges formula we get,

$$
\begin{aligned}
& x=\frac{\left(y-y_{1}\right)\left(y-y_{2}\right) \cdots\left(y-y_{n}\right)}{\left(y_{0}-y_{1}\right)\left(y_{0}-y_{2}\right) \cdots\left(y_{0}-y_{n}\right)\left(x_{0}\right)}+\frac{\left(y-y_{0}\right)\left(y-y_{2}\right) \cdots\left(y-y_{n}\right)}{\left(y_{1}-y_{0}\right)\left(y_{1}-y_{2}\right) \cdots\left(y_{1}-y_{n}\right)}\left(x_{1}\right)_{x} \\
& \frac{\left(y-y_{0}\right)\left(y-y_{1}\right) \cdot\left(y-y_{n}\right)}{\left(y_{2}-y_{0}\right)\left(y_{2}-y_{1}\right) \cdot\left(y_{2}-y_{n}\right)}+\cdots \frac{\left(y-y_{0}\right)\left(y-y_{1}\right) \cdots\left(y-y_{n-1}\right)}{\left(y_{n}-y_{0}\right)\left(y_{n}-y_{1}\right) \cdots\left(y_{n}-y_{n-1}\right)}\left(n_{n}\right) \\
& \text { A) }\left(y_{2}-y_{0}\right)\left(y_{2}-y_{1}\right) \cdot\left(y_{2}-y_{n}\right)\left(y_{n}-y_{0}\right)\left(y_{n}-y_{1}\right) \cdots\left(y_{n}-y_{n-1}\right)^{2}
\end{aligned}
$$

P6 find the value of $x$ correct, to one decimal place for which $y=7$ given

$x$	1	3	4
$y$	4	12	19

$$
\begin{aligned}
\frac{\text { soln:- }}{x_{0}=}= & , x_{1}=3, x_{2}=4, y_{0}=4, y_{1}=12, y_{2}=19 \\
x= & \frac{\left(y-y_{1}\right)\left(y-y_{2}\right)}{\left(y_{0}-y_{1}\right)\left(y_{0}-y_{2}\right)}\left(x_{0}\right)+\frac{\left(y-y_{0}\right)\left(y-y_{2}\right)}{\left(y_{1}-y_{0}\right)\left(y_{1}-y_{2}\right)}\left(x_{1}\right)+ \\
& \frac{\left(y-y_{0}\right)\left(y-y_{1}\right)}{\left(y_{2}-y_{0}\right)\left(y_{2}-y_{1}\right)}+\left(x_{2}\right)+ \\
= & \frac{(7-12)(7-19)}{(4+12)(4-19)}(1)+\frac{(7-4)(7-19)}{(12-4)(12-19)}(3)+\frac{(7-4)(7-12)}{(19-4)(19-12)}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{(-5)(-12)}{(-8)(-15)}(1)+\frac{(3)(-12)}{(8)(-7)}(3)+\frac{(3)(-5)}{(15)(7)}  \tag{4}\\
& =\frac{60}{120}\left(12+\frac{36}{56}(3)+\frac{(-15)}{105}(4)\right. \\
& =0.5+1.928571429 \\
& =1.8571
\end{align*}
$$

Pb The value of $x$ and $u_{x}$ are given below.

$x$	5	6	9	11
$u_{x}$	12	13	11	16

$$
u_{x}=15
$$

$$
\begin{align*}
& \text { Sorn:- } x_{0}=5, x_{1}=6, x_{2}=9, x_{3}=11, u_{x_{0}}=12, u_{x_{1}}=13, u x_{2}=1 \\
& u x_{3}= 16 \\
& u_{x+15)}= \frac{\left(y-y_{1}\right)\left(y-y_{2}\right)\left(y-y_{3}\right)}{\left(y_{0}-y_{1}\right)\left(y_{0}-y_{2}\right)\left(y_{0}-y_{3}\right)}\left(x_{0}\right)+\frac{\left(y-y_{0}\right)\left(y-y_{2}\right)\left(y_{-}-y_{3}\right)}{\left(y_{1}-y_{0}\right)\left(y_{1}-y_{2}\right)\left(y_{1}-y_{3}\right)} \\
&+\frac{\left(y-y_{0}\right)\left(y-y_{1}\right)\left(y-y_{3}\right)}{\left(y_{2}-y_{0}\right)\left(y_{2}-y_{1}\right)\left(y_{2}-y_{3}\right)}+\frac{\left(y_{1}-y_{0}\right)\left(y-y_{1}\right)\left(y-y_{2}\right)}{\left(y_{3}-y_{0}\right)\left(y_{3}-y_{1}\right)\left(y_{3}-y_{2}\right)}\left(x_{3}\right) \\
&= \frac{(15-12)(15-11)(15-16)}{(12-13)(12-11)(12-16)}(5)+\frac{(15-12)(15-11)(15-16)}{(13-12)(13-11)(13-16)}(6)+ \\
& \frac{(15-12)(15-13)(15-16)}{(11-12)(11-13)(11-16)}(9)+\frac{(15-12)(15-13)(15-11)}{(16-12)(16-13)(16-11)}(11) \\
&= \frac{-8}{4}(5)+\frac{(+12)}{+16}(6)+\frac{+6}{10}(9)+\frac{24}{60}(11)  \tag{11}\\
&=-10+12+5.4+4.4 \\
&= 11.8
\end{align*}
$$

Iterative method $\frac{(i-19), q-o f-q j]}{\text { difference }}$
Newtons forward difference formula is.

$$
\begin{aligned}
& y_{p}=y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!p} \Delta^{2} y_{0}+\cdots+\frac{p(p-1) \cdot(p-n-1)}{n} \Delta^{n} y_{0} \\
& y p=\frac{1}{\Delta y_{0}}\left[y_{p}-y_{0} \frac{-p(p-1)}{2!} \Delta^{2} y_{0}-\frac{p(p-1)(p-2)}{3!} \Delta^{3} y_{0}-\cdots\right]
\end{aligned}
$$

Neglecting the second and higher order differences we obtain the first approximation 8 to $p$ given by

$$
p_{1}=\frac{1}{\Delta y_{0}}\left(y_{p}-y_{0}\right)
$$

"\% find the second approximation to $p$ we twain lem whit h second difference and replace $p$ by

$$
\therefore P_{3}=\frac{1}{A y_{n}}\left[y_{p}=y_{0}-\frac{P_{1}\left(p_{1}-1\right)}{2!} \Delta^{x} y_{0}\right]
$$

find the grab third approximation we retain the lems lupe third oder difference and replace $P_{\text {by }}$

$$
\therefore P_{3}=\frac{1}{\Delta y_{0}}\left[y_{p}-y_{0}-\frac{p_{2}\left(p_{2}-1\right)}{2!} \Delta y_{0}-\frac{p_{2}\left(p_{2}-1\right)}{3!} \Delta^{3} y_{0}\right]
$$

Continue this precess till the successive values of $p$ are approximately equal.
P) Tabulate $y=x^{3}$ for $x=2,3,4,5$ and Calculate (7) the cube root of 10 correct to 3 decimal place

Solo


$$
\begin{aligned}
P_{1} & =\frac{1}{\Delta y_{0}}\left(y_{p}-y_{0}\right)=\frac{1}{19}(10-8)=\frac{1}{19}(2) \\
P_{1} & =0.1053] \\
P_{2} & =\frac{1}{\Delta y_{0}}\left[y_{p}-y_{0}-\frac{p_{1}\left(p_{1}-1\right)}{\left.\Delta^{2} y_{0}\right]}\right. \\
& =\frac{1}{19}\left[10-8-\frac{(0.1053)(0.1053-1)}{2!}(18)\right] \\
& =\frac{19}{19}[2+0.84797]
\end{aligned}
$$

$$
\begin{aligned}
p_{3} & =\frac{1}{\Delta y_{0}}\left[y_{p}-y_{0}-\frac{p_{2}\left(p_{2}-1\right)}{2!} \Delta^{2} y_{0}-\frac{p_{2}\left(p_{2}-1\right)}{3!} \Delta^{\left(p_{2} y_{0}\right.}\right] \\
& 1
\end{aligned}
$$

$$
=\frac{1}{19}\left[10-8-\frac{(0.14989)(0.14989-1)}{2!}(18)+\right.
$$

$$
\left.\frac{(0.14989)(0.14989-1)}{3!}(6)\right]
$$

$$
=\frac{1}{19}[2+1.1468114-0.12942402]
$$

$$
=\frac{1}{19}[3.04 .9398 x]
$$

$$
p_{4}=0.154
$$

$$
P_{3}=0.1689
$$

$$
\begin{aligned}
& p_{4}=0.13 . \\
& p_{5}=0.1542 .
\end{aligned}
$$

$$
\begin{aligned}
& P_{3}=0.1689 \\
& P_{4}=\frac{1}{\Delta y_{6}}\left[y_{P}-y_{0}-\frac{\left(P_{3}\left(P_{3}-1\right)\right.}{2!} \Delta^{2} y_{0}-\frac{P_{3}\left(P_{3}-1\right)}{3!} \Delta^{\left(P_{3}-1\right)}\right. \\
& \left.\Delta^{3} y_{0}\right] \\
&
\end{aligned}
$$

$$
\left.=\frac{1}{19}\left[10-8-\frac{(0.1589)(0.1589-1)}{2!}(18)-\frac{(0.1589)(0.1589-1) 9}{3!}(6)\right]\right]
$$

$$
=\frac{1}{19}[2+1.20286+0.4954079]=\frac{1}{19}[3.6982679]
$$

$$
P_{4}=0.1541
$$

$$
\begin{aligned}
P_{5} & =\frac{1}{\Delta y_{0}} ;\left[y_{p}-y_{0}-\frac{p_{4}\left(p_{4}-1\right)}{2!} A^{2} y_{0}-\frac{P_{4}\left(P_{4}-1\right)\left(P_{4}-2\right)}{2!} A^{3} y_{0}\right] \\
& =1
\end{aligned}
$$

$$
=\frac{1}{19}\left[10-8-\frac{(0.1541-1)(0.1541)}{2!}(88)-0.1541(0.1541\right.
$$

$$
=\frac{1}{19}[2+11132-0.24062]
$$

$$
\begin{aligned}
& 0.1541(0.154(-1) \\
& \frac{(0.1541-2)}{3!} \times 6
\end{aligned}
$$


HW The following value of $y=f(x)^{\text {lownengation }}$
 $y=17542648 \quad 2564$ how coulav aroibont

('irethod.i) striog satab to toz s asvif) aloz
methodice estriog stats to tar s navipl wifor aroosh to lisimarflog os arivicatabs a $\cdots, 1,0=j$


1910818
Hermit's interpolating polynomial
Given a set of data points $\left(x_{i}, y_{i}, y_{i}^{\prime}\right) i=0,1$. determine a polynomial of least degree, which is $\left.\begin{array}{cc}\text { denoted, by } & H_{2 n+1} \text { such that } H_{2 n+1}(x)=y_{i} \\ 1 \\ \text { This polynomial } H^{1}\end{array}\right\}-1$ polynomial.

Pb Derive an interpolating polynomial in which both functions values and $1^{\text {st }}$ derivative values are to be assigned at each point of to the interpolating.
Soln:-
Given a set of data points. $\left(x_{i}, y_{i}, y_{i}^{\prime}\right)$, $i=0,1, \cdots n$ determine a polynomial of least, whin is denoted by $H_{2 n+1}$ (n) such that,

$$
\begin{aligned}
& H_{2 n+1}\left(x_{i}\right)=y_{i} \text { and } \\
& H_{2 n+1}\left(x_{i}\right)=y_{i}^{\prime}, i=0,1, \ldots n
\end{aligned}
$$

The polynomial $H_{2 n+1}(x)$ is called Hermit's interpolation polynomial.

Since we have $2_{n+2}$ Conditions the number of coefficients to be determined is $2 n+2$ and hence the degree of $H_{2 n+1} x$ is $2 n+1$.

The required polynomial by $H_{2 n+1}(x)$ can be written as

$$
\begin{equation*}
H_{2 n+1}(x)=\sum_{i=0}^{n} A_{i}(x) y_{i}+\sum_{i=0}^{n} B_{i}(x) y_{i} \tag{2}
\end{equation*}
$$

where $A_{i}(x)$ and $B_{i}(x)$ are polynomial of degree $\leqslant 2 n+1$ using (1) $\phi$ (2) we obtain the following conditions.

$$
\text { (i) } A_{i}\left(x_{j}\right)= \begin{cases}0 & \text { if } i \neq j  \tag{d}\\ 1 & \text { if } i=j\end{cases}
$$

(ii) $B_{i}\left(x_{j}\right)=0$ for all $i$ and $j$
iii) $A_{i}(x j)=0$ for all $i$ and $\left.j-\right\}=$
iv) $B_{i}^{\prime}(x j)= \begin{cases}0, & \text { if } i \neq j \\ 1 & \text { if } i=j\end{cases}$
since $A_{i}(x)$ and $B_{i}(x)$ are polynomials of degree $\leq 2 n+1$ we write afinmst tsimpory ant aunt

$$
\begin{aligned}
& A_{i}(x)=u_{i}(x) l_{i}^{2}(x) \text { and } \\
& B_{i}(x)=v_{i}(x) l_{i}^{2}(x) \\
&(x) \\
& \text { where } l_{i}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \ldots}{\left(x_{i}-x_{0}\right)\left(x x_{i}-x_{1}\right) \cdots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i}+1\right)}
\end{aligned}
$$

Notethat $l_{i}(x)$ lagrange's interpolation polynomials and

$$
l_{i}\left(x_{j}\right)=\left\{\begin{array}{ll}
1 & \text { if } i=j  \tag{4}\\
0 & \text { if } i \neq j
\end{array}\right\}
$$

Since $l_{i}^{2}(x)$ is a polynomial of degree $2 n$ and
$L_{i}(x)$ and $B_{i}(x)$ are polynomial of degree $2_{n+1}$ see that $u_{i}(x)$ and $v_{i}(x)$ are polynomial) of degree ${ }^{\text {se }}$

$$
\text { Let } \begin{align*}
u_{i}(x) & =a_{i} x+b_{i} \\
v_{i}(x) & =c_{i} x+d_{i} \\
\therefore A_{i}(x) & =\left(a_{i} x+b_{i}\right) l_{i}^{2}(x) \\
B_{i}(x) & =\left(c_{i} x+d_{i}\right) l_{i}^{2}(x) \tag{5}
\end{align*}
$$

using the conditions (3) and (4) in (5) We obtain

$$
\begin{gathered}
a_{i} x_{i}+b_{i}=1 \\
c_{i} x_{i}+d i=0 \\
a_{i}+2 l_{i}\left(x_{i}\right)=0 \\
c_{i}=1
\end{gathered}
$$

Hence we obtain $a_{i}=-2 l_{i}^{\prime}\left(x_{i}\right)$

$$
\begin{aligned}
& b_{i}=H_{2} x_{i} l_{i}^{\prime}\left(x_{i}\right) \\
& c_{i}=1
\end{aligned}
$$

$$
\text { and } d_{i}=-x_{i}
$$

Hence (5) becomes,

$$
\begin{aligned}
\left\{A_{i}(x)\right. & =\left[-2 l_{i}^{\prime}(x) x+1+2 x_{i} l_{i}^{\prime}\left(x_{i}\right)\right] l_{i}^{2}(x) \\
& =\left[1-2\left(x-x_{i}\right) l_{i}\left(x_{i}\right)\right] l_{i}^{2}(x) \\
\text { and } B_{i}(x) & =\left(x-x_{i}\right) l_{i}^{2}(x)
\end{aligned}
$$

Thus the required Hermits interpolation polynomial

$$
H_{2 n+1}(x)=\sum_{i=0}^{n} A_{i}(x) y_{i}+\sum_{i=0}^{n} B_{i}(x) y_{i}
$$

where

$$
\begin{aligned}
& \text { here }(x)=\left[1-2\left(x-x_{i}\right) l_{i}^{\prime}(x i)\right] l_{i}^{2}(x) \\
& A_{i}(x) \\
& B_{i}(x)=\left(x-x_{i}\right) l_{i}^{2}(x)
\end{aligned}
$$

18 18 using Hermite's interpolation find sin 1.05 for the following data.

$x$	1.0	1.1
$y=\sin x$	0.84147	0.89121
$y^{\prime}=\cos x$	0.5403	0.45360

Here $n=1, \quad x_{0}=1, x_{1}=1.1$
Hermite's interpolating polynomial is

$$
H_{2 n+1}(x)=\sum_{i=0}^{n} A_{i}(x) y_{i}+\sum_{i=0}^{\sum} B_{i}(x) y_{i}
$$

here $n=1$, then

$$
\begin{aligned}
& H_{2(1)+1}(x)=\sum_{i=0} A_{i}(x) y_{i}+\sum_{i=0}^{1} B_{i}(x) y_{i} \\
& H_{3}(x)=\sum_{i=0}^{1} A_{i}(x) y_{i}+\sum_{T=0}^{1} B_{i}(x) y_{i}
\end{aligned}
$$

where,

$$
\begin{aligned}
& A_{1}(x)=\left[1-2\left(x-x_{0}\right) l_{0}^{1}\left(x_{0}\right)\right] l_{0}^{2}(x) \\
& A_{1}(x)=\left[1-2\left(x-x_{1}\right) l_{1}^{1}(x)\right] l_{1}^{2}(x) \\
& B_{0}(x)=\left(x-x_{0}\right) l_{0}^{2}(x) \\
& B_{1}(x)=\left(x-x_{1}\right) l_{1}^{2}(x) .
\end{aligned}
$$

Now, $l_{0} x=\frac{x-x_{1}}{x_{0}-x_{1}}$

$$
\begin{aligned}
& =\frac{x-1.1}{1-1.1} \\
& =\frac{x-1.1}{-0.1} \\
& \text { lox }=-10 x+11 \\
& l_{0}^{2}(x)=(-10 x+11)^{2} 100 x^{2}-220 x+121 \\
& l_{0}^{\prime}(x)=-10 \text { and } l_{0}^{\prime}\left(x_{0}\right)=-10 \\
& l_{1}(x)=\frac{x-x_{0}}{x_{1}-x_{0}}=\frac{x-1}{1.1-1}=10 x-10 \\
& l_{1}^{\prime}(x)=10 \text { and } l_{1}^{\prime}\left(x_{1}\right)=10 \\
& \text { Now, } A_{0}(x)=[1-2(x-1)(-10)]\left[100 x^{2}-220 x+121\right] \\
& =(1-2 x+2)(-10)]\left[100 x^{2}-220 x+121\right] \\
& =[-10+20 x-20]\left[100 x^{2}-220 x+121\right] \\
& =[-30+20 x]\left(100 x^{2}-220 x+21\right]
\end{aligned}
$$

$$
\begin{aligned}
& 2000 x^{3}-7400 x^{2}+9020 x-3630
\end{aligned}
$$

$$
\begin{aligned}
& =-2000-x^{3}-16300 x^{2}+6600 x-2299 \\
& A_{1}(x)=[1-2(x-1.1)(10)]\left(100 x^{2}-200 x+100\right) \\
& =-2000 x^{3}+6300 x^{2}-6600 x^{2}+2300 \\
& B_{0}(x)=(x-1)\left(100 x^{2}-220 x+121\right) \\
& =100 x^{3}-320 x^{2}+341 x-121 \text {. } \\
& B_{1}(x)=(x-1.1)\left(100 x^{2}-200 x+100\right) \\
& =100 x^{3}-310 x^{2}+320 x-110 \\
& H_{3}(x)=A_{0}(x) y_{0}+A_{1}(x) y_{1}+B_{0}(x) y_{0}^{\prime}+B_{1}(x) y_{1}^{\prime} \\
& =\left(2000 x^{3}-6300 x^{2}+6600 x-2299\right)(0.84147) \\
& +\left(-2000 x^{3}+6300 x^{2}-6600 x+2300\right)(0.89121) \\
& +\left(100 x^{3}-320 x^{2}+341 x-121\right)(0.5403) \\
& +\left(100 x^{3}-310 x^{2}+320 x-110\right)(0.45360) \\
& =1682.94 x^{3}-5301.261 x^{2}+5553.702 \pi-1934.5398 \\
& -1782.42 x^{3}+5614 \cdot 623 x^{2}-5881 \cdot 986 x+204918 \\
& +54.03 x^{3}-172.896 x^{2}+184.2423 x-65.3763 \\
& +45.36 x^{3}-140.616 x^{2}+145 \cdot 152 x-49.896 \\
& H_{3}(x)=-0.09 x^{3}-0.15 x^{2}+1.1103 x-0.02883 \\
& \text { putting } x=9.05 \\
& H_{3}(x)=0.8674237 \\
& \text { ') bens of }=(x) \text { et }
\end{aligned}
$$

20108118
Numerical Differentiation and Integration
8.1 Derivatives using Newton's forward differencetion formula
Newton's interpolation formula for equal intervals is

$$
\begin{equation*}
y(x)=y_{0}+p \Delta y_{0}+\frac{p(p-1)}{21} \Delta^{2} y_{0}+\frac{p(p-1)(p-2)}{3!} \Delta^{3} y_{0}+\cdots \tag{1}
\end{equation*}
$$

Whave $p=\frac{x-x_{0}}{h}$
rifferentiating on (1) with resoet is $p$ we pet.
$V(x)=A_{x}+P A y+\frac{\phi^{2}-p}{2} \Delta y_{p}+p^{3}<a p^{2}+6+5 p$
$\frac{d y}{d p}=\Delta y_{0}+\left(\frac{2 p-1}{2!}\right) \Delta^{2} y_{0}+\left(\frac{3 p^{2}-6 p+2}{3!}\right) \Delta^{3} y_{c}+p^{2}+y^{2}$
Differentiating eqn $\left(\frac{4 p^{3}-18 p^{2}+2 p-6}{4!}\right) \Delta^{4}$
Differentiating eqn (2) with respet to $x$, we have

$$
\frac{d p}{d x}=\frac{1}{1}
$$

No. ${ }^{2}$

$$
\frac{d y}{d x}=\frac{d y}{d p} \cdot \frac{d p}{d x}
$$

$\left(\frac{d y}{d p}\right)_{x=x \rightarrow h}=\frac{1}{h}\left[\Delta y+\left(\frac{a p-1}{2!}\right) \Delta^{2} y_{0}+\left(\frac{3 p^{2}-6 p+2}{3!}\right) \Delta^{3} y_{0}+\right.$
$x=x+f h$

At $x=x_{0}, p=0$

$$
\left.\left(\frac{4 p^{3}-18 p^{2}+22 p-6}{4!}\right) \Delta^{4} y_{0}+\cdots\right]
$$

$$
\left(\frac{d y}{d x}\right)_{x=x_{0}}=\frac{1}{h}\left[\Delta y_{0}-\frac{1}{2} \Delta^{2} y_{0}+\frac{1}{3} \Delta^{3} y_{0}-\frac{1}{4} \Delta^{4} y_{0}+\cdots\right]
$$

NoI:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right) \frac{1}{h} \\
& \frac{d^{2} y}{d x^{2}}=\frac{1}{h^{2}}\left[\Delta^{2} y_{0}+(p-1) \Delta^{3} y_{0}+\left(\frac{6 p^{2}-18 p+11}{T_{2}^{2}}\right) \Delta^{4} y_{0}+\cdots\right]
\end{aligned}
$$

At $x=x_{2}, p=0$
$\therefore\left(\frac{d^{2} y}{d x^{2}}\right)_{k=x_{0}}=\frac{1}{h^{2}}\left[\Delta^{2} y_{0}-\Delta^{3} y_{0}+\frac{11}{12} \Delta^{4} y_{0}-\cdots \cdot\right]$
Derivatives of higher order can simitarly be
obtained.
pRimitives using Newton's backward
we know that Newton's interpolating formula for backward difference is
backward difference is
where $p=\frac{x-x n}{h}$
As before. differentiating (1) with respect to $x$, we $q_{t}$

$$
\begin{aligned}
& \text { As before, differentiating } \\
& \frac{d y}{d x}=\frac{1}{h}\left[\nabla y_{n}+\left(\frac{2 p+1}{2!}\right) \Delta \nabla^{2} y_{n}+\left(\frac{3 p^{2}+6 p+2}{3!}\right) \nabla^{3} y_{n}+\right. \\
& \left.\left(\frac{2 p^{3}+9 p^{2}+11 p+3}{4!}\right) \nabla^{4} y_{n}+\cdots\right] \\
& \text { at } x=x_{n}, p=0 \\
& \therefore\left(\frac{d y}{d x}\right)^{2!}=\frac{1}{h}\left[\nabla y_{n}+\frac{1}{2} \nabla^{2} y_{n}+\frac{1}{3} \nabla^{3} y_{n}+\cdots\right] \\
& \frac{d^{2} y}{d x^{2}}=\frac{1}{h}\left[\nabla y_{n}+(p+1) \nabla^{3} y_{n}+\left(\frac{6 p^{2}+18 p+11}{12}\right) \nabla^{4} y_{n}+\cdots\right] \\
& \text { At } x=x_{n}, p=0 \\
& \therefore\left(\frac{d^{2} y}{d x^{2}}\right)_{x=x_{n}}=\frac{1}{h^{2}}\left[\nabla^{2} y_{n}+\nabla^{3} y_{n}+\frac{11}{12} \nabla^{4} y_{n}+\cdots\right]
\end{aligned}
$$

similarly we can find the higher order derivatives.
14108118 8.3 Derivate using stirling formula
The stirling formula is

$$
\begin{align*}
& \text { The stirling formula } \\
& y_{p}=y_{0}+p\left(\frac{\Delta y_{0}+\Delta y_{-1}}{2}\right)+\frac{p^{2}}{2!} \Delta^{2} y_{-1}+\frac{p\left(p^{2}-1^{2}\right)}{3!} \\
& \qquad\left(\frac{\Delta^{3} y_{-1}+\Delta^{3} y_{-2}}{2}\right)+\frac{p^{2}\left(p^{2}-1\right)}{4!} \Delta y_{-2}^{4}+\frac{p\left(p^{2}-1\right)\left(p^{2}-2\right)}{5!}  \tag{1}\\
& \left(\frac{\Delta^{5} y_{-2}+\Delta^{5} y_{-3}}{2}\right)+\cdots
\end{align*}
$$

Scanned by CamScanner
white pera
a. Seton differentiating (9) with revert in or we ye

$$
\begin{aligned}
& \frac{d y}{d x} \times \frac{1}{h} \int\left(\frac{p 1 k_{1}+1 y 1}{2}\right)+A^{3} y, 1+\frac{\left(11^{3} 1\right)}{41}\left(\frac{1 y}{2}+1 y^{3}\right) \\
& \frac{t\left(4 p^{2}+1 p^{\prime}\right.}{4!} a^{4}+1
\end{aligned}
$$

At $x=x_{0}, p=0$

$$
\left(\frac{d v}{d x}\right)_{x=x_{e}}=\frac{1}{h}\left[\left(\frac{\lambda_{y_{e}}+\lambda_{y-1}}{2}\right)=\frac{1}{6}\left(\frac{\Lambda_{y},+\Lambda_{y}}{y}\right)+\frac{1}{36}\left(\frac{\Delta_{y}^{\prime}+n_{y}^{\prime}}{9}\right)\right.
$$

III ${ }^{1 / 3}$ we can derive

$$
\left(\frac{d^{2} y}{d x^{2}}\right)_{x=x^{x e}}=\frac{1}{h^{2}}\left[\Lambda_{y=1}^{2}-\frac{1}{12} \Lambda_{y=3}^{y}+\cdots\right]
$$

$8 \%$ maxima and minima of the interpolation
polynomial
since the derivative of a function $y=f(x)$ given by a table of values is defined to be the derivative of the interpolation polynomial the maxima and minima of $f(x)$ can be contained by equation the first derivative to zero.
Newton's inter forward interpolation formula is,

$$
y=y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{0}+\frac{p(p-1)(p-2)}{3!} \Delta^{3} y_{0}+\cdots
$$

where $p=\frac{x-x_{0}}{h}$

$$
\therefore \frac{d y}{d p}=\Delta y_{0}+\frac{2 p-1}{2} \Delta^{2} y_{0}+\frac{3 p^{2}-6 p+2}{6} \Delta^{2} y_{0}+\cdots
$$

For $y$ to be a maximum (or) minimum $\frac{d y}{d p}=0$

$$
\begin{equation*}
\Delta y_{0}+\frac{2 p-1}{2} \Delta^{2} y_{0}+\frac{3 p^{2}-6 p+2}{6} \Delta^{3} y_{0}=0 \tag{2}
\end{equation*}
$$

inealictina higher order differences)
substitude in (2) the know values of $\Delta y_{0}, \Delta^{2} y_{0}$ $\Delta^{3} y_{0}$ from: the difference table we get a quad ran ? equation in $p$ which can be solved for $p$.

The corresponding value of $x$ at which $y_{C_{2}}$ has maximum (or) minimum is given by $x=x_{0 x}$
2qlesuse Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=51$ from the following $d_{0 y}$

$x$	50	60	70	80	90
$y$	19.96	36.65	58.81	77.21	94.61

Son:- Here $h=10$
we have $p=\frac{x-x_{0}}{h}=\frac{51-50}{10}=0.1$
At $x=51, p=0.1$

$$
\begin{aligned}
\left(\frac{d y}{d x}\right)_{x=51}=\left(\frac{d y}{d x}\right)_{p=0.1} & =\frac{1}{h}\left[\Delta y_{0}+\frac{(2 p-1)}{21} \Delta^{2} y_{0}+\frac{\left(3 p^{2}-6 p+2\right)}{3!} \Delta y_{4}\right. \\
& \left.+\left(4 p^{3}-18 p^{2}+22 p-6\right) \Delta^{4} y_{0}+\cdots\right]
\end{aligned}
$$

The difference table, 4!

$\boldsymbol{x}$	$p=\frac{x-50}{10}$	$y$	$\Delta y$	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$
50	0	19.96	16.69			
60	1	36.65		5.47	-9.23	
70	2	58.81				
80	3	77.21	18.40			
90	4	94.61				

$$
\begin{aligned}
\left(\frac{d y}{d x}\right)=0.1 & \frac{1}{10}\left[16.69+\frac{(0.2-1)}{2}(5.47)+\left(\frac{3(0.1)^{2}-6(0.1)+2}{6}\right)(-9.23)\right. \\
& \left.+\frac{\left(4(0.1)^{3}-18(0.1)^{2}+22(0.1)-6\right)}{24}(11.99)\right] \rightarrow
\end{aligned}
$$

$=\frac{1}{10}[16.69-2.188-2.1998-1.9863]$
$\frac{d y}{d x}=1.0316$
$\frac{d^{2} y}{d x^{2}}$

$$
\begin{aligned}
& =\frac{1}{h^{2}}\left[\Delta^{2} y_{0}+(p-1)^{3} y_{0}^{3}+\frac{\left(16 p^{2}-18 p+11\right)}{12} \Delta^{1} y_{0}+\cdots\right] \\
& =\frac{1}{100}\left[5 \cdot 47+(0 \cdot 1-1)(-9 \cdot 23)+\frac{\left(6(1)^{2}-18(1)+11\right)}{12} \times 11 \cdot 99\right] \\
& =\frac{1}{100}[5 \cdot 47+8 \cdot 307+9 \cdot 2523]
\end{aligned}
$$

$$
\frac{d^{2} y}{d x^{2}}=0.2303
$$

ph Find $y^{\prime}(x)$ given

$x$	0	1	2	3	4
$y(x)$	1	1	15	40	85

$$
\text { Hence find } y^{\prime}(x) \text { at } x=0.5
$$

som:-
Here $h=1$
Newton's forward interpolation formula,
$y_{p}^{\prime}=\frac{1}{h}\left[\Delta y_{0}+\frac{(2 p-1)}{2!} \Delta^{2} y_{0}+\frac{\left(3 p^{2}-6 p+2\right)}{3!} \Delta^{3} y_{0}+\right.$
where $p=\frac{x-x_{0}}{h}$

$$
\left.\frac{\left(4 p^{3}-18 p^{2}+22 p-6\right)}{4!} 4^{4} y_{0}+\cdots\right]
$$

$P=x$ at $x_{0}=0$.

$x$	$y$	$\Delta y$	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$
0	1	0			
1	1	14	14		
2	1.5	25	11	-3	12
3	40	45	20	9	
4	85	45			
$\therefore y_{p}^{\prime}=4 y_{0} \frac{\frac{1}{h}+\frac{1}{2}=1}{(2 x-1)}$					
2	$\Delta^{2} y_{0}+\frac{3 x^{2}-6 x+2}{6} \Delta^{3} y_{0}+\frac{4 x^{3}-18 x^{2}+22 x-6}{24} \Delta^{4} y_{0}$				

$$
\begin{aligned}
& \left.=0+\frac{(2 x-1)}{2}(14)+\frac{\left(3 x^{2}-6 x+2\right)}{62}(-3)+\frac{\left(4 x^{3}-18 x^{2}+22\right.}{242}+6\right) \\
& =7(2 x-1)=\frac{\left(3 x^{2}-6 x+2\right)}{2}+\left(2 x^{3}-9 x^{2}+11 x-3\right) \\
y^{\prime}(x) & =2 x^{3}-\frac{21}{2} x^{2}+28 x-11
\end{aligned}
$$

Now, $y^{\prime}$ at $x=0.5$
Then $y^{\prime}(0.5)=2(0.5)^{3}-\frac{21}{2}(0.5)^{2}+28(0.5)-11$

$$
=0.625
$$

04109118
Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=89$

$$
\begin{array}{llllll} 
& d x & d x^{2} & 80 & 90 \\
x & 50 & 60 & 70 & 80 & 94^{\circ}
\end{array}
$$

$$
\begin{array}{cccccc}
x & 50 & 60 & 70 & 80 & 17.21 \\
y & 19.96 & 36.65 & 58.81 & 74.61
\end{array}
$$

Sol:-
here $h=10$
Neut on's backutard formuta, $P=\frac{x-x_{n}}{h}=\frac{89-90}{10}=1$ The difference table

$x$	$p=\frac{x-50}{10}$	$y$	$\Delta y$	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$
50	0	19.96	16.69	5.47		
60	1	36.65	22.16			
70	2	58.81	18.40			
80	3	77.21	17.40		2.76	
90	4	94.61				

$$
\left.\begin{array}{rl}
\left(\frac{d y}{d x}\right)_{x=89}=\left(\frac{d y}{d x}\right)_{-0.1}= & \frac{1}{h}\left[\nabla y_{p}+\frac{1}{k} \nabla^{2} y_{n} t\left(\frac{2 p+1}{2!}\right) \nabla^{2} y_{n}+\right. \\
& \left(\frac{3 p^{2}+6 p+2}{3!}\right) \nabla^{3} y_{n}+ \\
& \left(\frac{2 p^{3}+9 p^{2}+11 p+3}{4!}\right) \nabla^{4} y_{n}
\end{array}\right)
$$

Scanned by CamScanner

$$
\frac{1}{10} \left\lvert\,(11.40)+\left(\frac{2(-0411)}{2!}\right)(1.00)+\frac{3(0.1116(01) 12}{8!}(2.16\right.
$$

$$
\left.+\frac{2(-0.1)^{4}+9(-0.1)^{1}+11(0.01) 3}{41}\right] 11.97
$$

$$
\begin{aligned}
&=\frac{1}{10}[17.40-0.9+0.6578+0.9932] \\
&=\frac{1}{10}[18.151]=1.8151 \\
& \frac{d y}{d x}=1.8151 \\
& \frac{d^{2} y}{d x^{2}}=\frac{1}{h^{2}}\left[\nabla^{2} y_{n}+\nabla^{3} y_{n}+\frac{11}{12} \nabla^{4} y_{n}\right] \\
&=\frac{1}{(110)^{2}}\left[(-1.00)+(2.76)+\frac{11}{12}(11.99)\right] \\
&=\frac{1}{100}[12.751233] \\
& \frac{d^{2} y}{d x^{2}}=0.1275 \\
& \text { dis } \\
& \text { Numerical integration }
\end{aligned}
$$

.20) 0 al 18

Newton's-Cote's quadrature formula Let $I=\int_{a}^{b} f(x) d x$ where $f(x)$ taken the values $y_{0}, y_{1}, y_{2} \cdots y_{n}$ for $x=x_{0}, x_{1}, x_{2}, \cdots x_{n}$.
Let us divide the intervals ( $a, b$ ) into $n$ subintervels of width $h$ so that $x_{0}=a, x_{1}=x_{0}+h, x_{2}=x_{0}+2 h$, $\ldots x_{n}=x_{0}+n h$
Now' $I=\int_{a}^{b} f(x) d x \quad \begin{aligned} x=x_{0}+p h \\ \text { difertion }\end{aligned}$

$$
\begin{aligned}
& =h \int_{0}^{n} f\left(x_{0}+p h\right) d_{p} \text { where } p=\frac{x-x_{0}}{h} \quad x=x_{0} \\
& =h \int_{0}^{n}\left[y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{0}+\frac{p(p-1)(p-2)}{3!} \Delta^{3} y_{0}+\cdots\right] d p
\end{aligned}
$$

$[\because$ by newton's forward difference formula ]

$$
\begin{aligned}
& =n\left[y_{0} p+\frac{p^{2}}{2} \cdot \Delta y_{0}+\frac{1}{2}\left(\frac{p^{3}}{3}-\frac{p^{2}}{2}\right) \Delta^{2} y_{0}+\frac{p^{2}}{6}\left(\frac{p^{2}}{4}\right) \Delta^{3} y_{0}+\cdots\right]_{0}^{2} \\
& =h^{2}\left[n \cdot y_{0}+\frac{n^{2}}{2} \Delta y_{0}+\frac{1}{2}\left(\frac{p^{3}}{3}-\frac{n^{2}}{2}\right) \Delta^{2} y_{0}+\frac{1}{6}\left(\frac{n^{4}}{4}-n^{3}+n^{2}\right)\right. \\
& \therefore \int_{a}^{b} f(x) d x=h\left[n \cdot y_{0}+\frac{n^{2}}{2} \Delta y_{0}+\frac{1}{2}\left(\frac{n^{3}}{3}-\frac{n^{2}}{2}\right) \Delta^{2} y_{0}+\right. \\
& \left.\frac{1}{6}\left(\frac{n^{4}}{4}-n^{3}+n^{2}\right) \Delta^{3} y_{0}+\cdots\right]
\end{aligned}
$$

Trapezeridal Rule
We know that By Newton's cote's quadrature form $w_{b=x n}^{w e}$ have

$$
\int_{a=x_{0}}^{\text {we have }} \underset{b=x}{ } f(x) d x=h\left[n \cdot y_{0}+\frac{n^{2}}{2} \Delta y_{0}+\frac{1}{2}\left(\frac{n^{3}}{3}-\frac{n^{2}}{2}\right) \Delta y_{0}^{2}+\frac{1}{6}\left(\frac{n^{4}}{4}-n^{3}+n^{2}\right) \Delta y^{3} y_{0}\right.
$$

put $n=1$

$$
\int_{x_{0}}^{x_{1}} f(x) d x=h\left[y_{0}+\frac{1}{2} \Delta y_{0}\right]
$$

$$
=h\left[y_{0}+\frac{1}{2}\left(y_{1}-y_{0}\right)\right]
$$

$$
: \int_{x_{0}}^{x_{1}} f(x) d x=\frac{h}{2}\left(y_{0}+y_{1}\right)
$$

$x_{n-1}$
Adding these equation, we have
$x_{n}$

$$
y_{2}
$$

$$
=\frac{h}{2}\left[2 y_{0}+y_{1}-y_{0}\right]
$$

$$
\begin{aligned}
& n \|_{x_{1}}^{x_{0}}, x_{2} \\
& \int_{x_{1}}^{x_{3}} f(x) d x=\frac{h}{2}\left[y_{1}+y_{2}\right] \\
& \int_{x_{2}} f(x) d x=\frac{h}{2}\left[y_{2}+y_{3}\right] \\
& \ldots \ldots \ldots \\
& \ldots \ldots \ldots \\
& \int_{x_{n-1}}^{x_{n}} f(x) d x=\frac{h}{2}\left[y_{n-1}+y_{n}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Adding these equation } \\
& \int_{x_{0}}^{x_{n}} f(x) d x+\int_{x_{1}}^{x_{2}} f(x) d x+\cdots+\int_{x_{n-1}}^{x_{n}} f(x) d x=\frac{h}{2}\left[\left(y_{0}+y_{\pi}\right)+2 y_{1}+2 y_{2}+\cdots+\right. \\
& \left.2 y_{n-1}\right]
\end{aligned}
$$

$$
\int_{x_{0}=a}^{\infty} f(x) d x=\frac{h}{2}\left[\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+\cdots+y_{n-1}\right)\right]
$$

which is a required Trapezeridal Rule.

$$
\text { simpson's } \frac{1}{3} \text { Rule }
$$

We know that By Newton's coke's quadrature formula, we have
$\int_{a=x_{0}}^{b^{n} x_{n}} f(x) d x$
$\therefore \int_{x_{0}}^{x_{2}} f(x) d x=\dot{h}\left[2 y_{0}+\frac{2^{2}}{2} \Delta y_{0}+\frac{1}{2}\left(\frac{2^{3}}{2}-\frac{2^{2}}{2}\right) \Delta^{2} y_{0}\right]$
$=h\left[2 y_{0}+2 \Delta y_{0}+\frac{1}{2}\left(\frac{8}{3}-2\right) \Delta^{2} y_{0}\right]$
$=h\left[2 y_{0}+2 \Delta y_{0}+\frac{1}{3} \Delta^{2} y_{0}\right]$
$=\frac{h}{3}\left[6 y_{0}+6\left(y_{1}-y_{0}\right)+\left(y_{2}-2 y_{1}+y_{0}\right)\right]$
$=\frac{h}{3}\left[6 y_{0}+6 y_{1}-6 y_{0}+y_{2}-2 y_{1}+y_{0}\right]$
$=\frac{h}{3}\left[\right.$ 稓 $\left.+4 y_{1}+y_{2}+y_{0}\right]$
$\int \begin{aligned} & x_{2} \\ & x_{0} \\ & x_{0}\end{aligned}$
$\int f(x) d x=\frac{h}{3}\left[y_{0}+4 y_{1}+y_{2}\right]$
|ll ${ }^{1 y} x_{4}$
$\int_{x_{2}}^{x_{4}} f(x) d x=\frac{h}{3}\left[y_{2}+4 y_{3}+y_{4}\right]$

$$
\begin{gathered}
\int_{x_{4}}^{x_{6}} f(x) d x=\frac{h}{3}\left[y_{4}+4 y_{5}+y_{6}\right] \\
\ldots
\end{gathered}
$$

$$
x_{4}
$$

$$
\begin{array}{cc}
x_{4} & \ldots \cdot \\
\ldots & \cdots \\
\ldots & \cdots
\end{array}
$$

$$
\int^{x_{n}} f(x) d x=\frac{h}{3}\left[y_{n-2}+4 y_{n-1}+y_{n}\right]
$$

$$
x_{n-2}
$$

Adding these equation, we get,
$\int_{x_{0}}^{x_{2}} f(x) d x+\int_{x_{2}}^{x_{4}} f(x) d x+\cdots+\int_{x_{n-2}}^{x_{n}} f(x) d x=\frac{h}{3}\left[\begin{array}{c}\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+\cdots+y_{n-1}\right) \\ \left.+2\left(y_{2}+y_{4}+\cdots+y_{n-2}\right)\right]\end{array}\right]$
$\therefore \int^{x_{n}=b} f(x) d x=\frac{h}{3}\left[\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+\cdots+y_{n-1}\right)+2\left(y_{2}+y_{4}+\right.\right.$. $x_{x_{0}} f(x) d x=\frac{1}{3}$
which is the required simpson's $1 / 3$ rule.
Simpson's $3 / 8$ Rule :-
we know that By Newton's cote's quadrature formula we have
$\int_{a=x_{0}}^{b=x_{n}} f(x) d x=h\left[n \cdot y_{0}+\frac{n^{2}}{2} \Delta y_{0}+\frac{1}{2}\left(\frac{n^{3}}{3}-\frac{n^{2}}{2}\right) \Delta^{2} y_{0}+\frac{1}{6}\left(\frac{n^{4}}{4}-n^{3}+n^{2}\right]_{8}\right.$
$a=x_{0}$
put $n=3$
$\int^{x_{3}} f(x) d x=h\left[3 \cdot y_{0}+\frac{3^{2}}{2} \Delta y_{0}+\frac{1}{2}\left(\frac{3^{3}}{3}-\frac{3^{2}}{2}\right) \Delta \Delta^{2} y_{0}+\frac{1}{6}\left(\frac{3^{4}}{4}-3^{3}+3^{2}\right) \Delta^{3} y_{1}\right.$
Ko. $\quad=h\left[3 y_{0}+\frac{9}{2} \Delta y_{0}+\frac{1}{2}\left(9-\frac{9}{2}\right) \Delta^{2} y_{0}+\frac{1}{6}\left(\frac{81}{4}-18\right) \Delta^{3} y_{0}\right]$
$=h\left[3 y_{0}+\frac{9}{2} \Delta y_{0}+\frac{1}{2}\left(\frac{18-9}{2}\right) \Delta^{2} y_{0}+\frac{1}{6}\left(\frac{81-72}{4}\right) \Delta^{3} y_{0}\right]$
$=h\left[3 y_{0}+\frac{9}{2} \Delta y_{0}+\frac{1}{2}\left(\frac{9}{2}\right) \Delta^{2} y_{0}+\frac{1}{k_{2}}\left(\frac{9^{3}}{4}\right) \Delta^{3} y_{0}\right]$
$=h\left[3 y_{0}+\frac{9}{2} \Delta y_{0}+\frac{9}{4} \Delta^{2} y_{0}+\frac{3}{8} \Delta^{3} y_{0}\right]$
$=\frac{h}{6}\left[3 y_{0}+\frac{9}{2}\left(y_{1}-y_{0}\right)+\frac{9}{4}\left(y_{2}-2 y_{1}+y_{0}\right)+\frac{3}{8}\left(y_{3}-3 y_{2}+3 y_{1}-y_{0}\right)\right]$
$=\frac{\hbar}{8}\left[24 y_{0}+36\left(y_{1}-y_{0}\right)+18\left(y_{2}-2 y_{1}+y_{0}\right)+3\left(y_{3}-3 y_{2}+3 y_{1}-y_{0}\right)\right]$
$=\frac{h}{8}\left[24 y_{0}+36 / y_{1}-36^{\prime} y_{0}+18 y_{2}-36 y_{1}+18 y_{0}+3 y_{3}-9 y^{2} y_{2}+9 y_{1}-3 y_{0}\right]$
$=\frac{h}{8}\left[3 y_{0}+9 y_{1}+9 y_{2}+3 y_{3}\right]$
$=\frac{3 h}{8}\left[y_{0}+3 y_{1}+3 y_{2}+y_{3}\right]$
$f(x) d x=\frac{3 h}{8}\left[y_{0}+3 y_{1}+3 y_{2}+y_{3}\right]$
$111^{1 y} \int_{x_{3}}^{x_{6}} f(x) d x=\frac{3 h}{8}\left[y_{3}+3 y_{4}+3 y_{5}+y_{6}\right]$
$\int_{x_{6}}^{x 9} f(x) d x=\frac{3 h}{8}\left[y_{6}+3 y_{7}+3 y_{8}+y_{9}\right]$

$$
\int^{x_{n}} f(x) d x=\frac{3 h}{8}\left[y_{n-3}+3 y_{n-2}+3 y_{n-1}+y_{n}\right]
$$

$x_{n-3}$
$\begin{aligned} & x_{0} x_{3} \\ & \frac{3 h}{8}\left[\left(y_{0}+y_{n}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}+\cdots+y_{n-1}\right)+\right.\end{aligned}$

$$
\left.2\left(y_{3}+y_{6}+\ldots+y_{n-3}\right)\right]
$$

which is the required simpson's $3 / 8$ rule. weddle's rule
put $n=6$ is newton's -cote's quadrature formula. we get,

$$
\int^{x_{0}+6 h} f(x) d x=\frac{3 h}{10}\left[6 y_{0}+50 y_{1}+20 \operatorname{cod} y_{2}+6 y_{3}+y_{4}+5 y_{1}+y_{6}\right]
$$

$\left\|\|^{y}\right.$

$$
\int_{f(x)}^{x_{12}} f\left(x=\frac{3 h}{10} \cdot\left[y_{6}+5 y_{7}+y_{8}+6 y_{9}+y_{10}+5 y_{11}+y_{12}\right]\right.
$$

$$
x_{6}
$$

$$
\begin{aligned}
& \int_{x_{12}}^{x_{12}} f(x) d x=\frac{3 h}{10}\left[y_{12}+5 y_{13}+y_{14}+6 y_{15}+y_{16}+5 y_{17}+y_{18}\right] \\
& \vdots \\
& \int_{x_{n-6}}^{x_{n}} f(x) d x=\frac{3 h}{10}\left[y_{n-6}+5 y_{n-5}+y_{n-4}+6 y_{n-3}+y_{n-2}+5 y_{n-1}+y_{n}\right]
\end{aligned}
$$

Adding we get

$$
\begin{aligned}
& \text { Adding we get , } \\
& \int_{0}^{x_{0}+n h} f(x) d x=\frac{3 h}{10}\left[\left(y_{0}+5 y_{1}+y_{2}+6 y_{3}+y_{4}+5 y_{5}\right)+\left(2 y_{6}+5 y_{7}+y_{8}+6 y_{9}^{+}\right.\right. \\
& \left.y_{10}+5 y_{11}\right)+\cdots
\end{aligned}
$$

$$
\left.+\left(32 y_{n-4}+12 y_{n-3}+32 y_{n-2}+14 y_{n-1}+y_{n}\right)\right]
$$

Whish is the required meddle's rule.

Bole's rule:-
putting $n=4$ in newton-cote's quadrature
formula, we obtain,
$x_{0}+n h$
$f(x) d x=\frac{2 h}{45}\left[\left(7 y_{0}+32 y_{1}+12 y_{2}+32 y_{3}+14 y_{4}\right]\right.$ $\left.+32 y_{5}+12 y_{6}+32 y_{7}+14 y_{8}\right)+\cdots \cdot \cdot$

$$
\left.+\left(32 y_{n-4}+12 y_{n-3}+32 y_{n-2}+14 y_{n-8}+y_{n}\right)\right]
$$

This is known as Boole's rule.

Pb Evaluate $\int_{0}^{5} \frac{d x}{4 x+5}$ by (i) Trapezoidal test (ii) simpson's $\frac{1}{3}$ rule (iii) simpson's' $3 / 8$ rule (iv) weddle's rule. Son:- Take $n=10$

$$
\therefore h=\frac{b-a}{h}=\frac{5-0}{10}=0.5
$$

$x$	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
$y=1$   $4 x+5$	0.2   $y_{0}$	0.14   $y_{1}$	0.11   $y_{2}$	0.09   $y_{3}$	0.08   $y_{4}$	0.07   $y_{5}$	0.06   $y_{0}$	0.05   $y_{1}$	0.04   $y_{5}$	0.04   $y_{9}$	0.04   $y_{10}$

(i) Trapezoidal test where $\quad \begin{gathered}\text { whee } \\ h=0.5\end{gathered}$

$$
\int_{a}^{\infty} f(x) d x=\frac{h}{2}\left[\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+y_{3}+\cdots+y_{n-1}\right)\right]
$$

$$
=\frac{0.5}{2}\left[\left(y_{0}+y_{10}\right)+2\left(y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}+y_{7}+y_{8}+y_{9}\right]\right]
$$

$$
=\frac{0.5}{2}[(0.2+0.04)+2(0.14+0.11+0.09+0.08+0.07+0.06 t
$$

$$
0.05+0.04+0.04)]
$$

$$
=\frac{0.5}{2}[0.24+2(0.68)]
$$

$$
\begin{aligned}
& =\frac{0.5}{2}[1.6]=(0.25)(1.6) \\
& =0.411
\end{aligned}
$$

(ii) Simpson's $\frac{1}{3}$ rule:

$$
\int_{0}^{b} f(x) d x=\frac{h}{3}\left[\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+\cdots+y_{n-1}\right)+2\left(y_{2}+y_{4}+\cdots+y_{n-2}\right)\right]
$$

$$
=\frac{0.5}{3}\left[\left(y_{0}+y_{10}\right)+4\left(y_{1}+y_{3}+y_{5}+y_{7}+y_{9}\right)+2\left(y_{2}+y_{4}+y_{6}+y_{2}\right)\right]
$$

$$
=\frac{0.5}{3}[(0.2+0.04)+4(0.14+0.09+0.07+0.05+0.04)+
$$

$$
2(0.11+0.08+0.06+0.04)]
$$

$$
=\frac{0.5}{3}[(0.24)+4(0.39)+2(0.29)]
$$

$$
=\frac{0.5}{3}[(0.24)+1.56+0.50]=\frac{0.5}{3}[2.38]=(0.161)(2.38)
$$

$$
=0.39746
$$

(iii) Simpson's $3 / 8$ rule

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\frac{3 h}{8}\left[\left(y_{0}+y_{n}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}+\cdots+y_{n-1}\right)+\right. \\
&\left.2\left(y_{3}+y_{6}+y_{1} \cdots+y_{n-3}\right)\right] \\
&=\frac{3 h}{8}\left[\left(y_{0}+y_{10}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}+y_{7}+y_{8}\right)+\right. \\
&\left.2\left(y_{3}+y_{6}+y_{9}\right)\right]
\end{aligned}
$$

Pb Evaluate $\int_{0}^{1+x^{2}} \frac{d x}{1 \text { using Trapezaidal rule with } h=0.2}$
Hence determine the value of $\pi$.
8001n:- here $h=0.2$

$$
y=\frac{1}{1+x^{2}}
$$

$x$	0	0.2	0.4	0.6	0.8	1.
$y=\frac{1}{1+x^{2}}$	1	0.9615	0.8621	0.7353	0.6098	0.5

$$
\begin{align*}
& \text { By Trapezoidal rule. } \\
& \int_{x_{0}}^{x n} f(x) d x=\frac{h}{2}\left[\left(y_{0}+y_{5}\right)+\left(y_{1}+y_{2}+y_{3}+y_{4}\right)\right] \\
& \therefore \int_{0}^{1} \frac{d x}{1+x^{2}}
\end{align*}=\frac{0.2}{2}[(1+0.5)+2(0.9615+0.8621+0.7353+0.6098)] .
$$

To find the value of $\pi$
By autual integration

$$
\begin{align*}
\int_{0}^{1} \frac{d x}{1+x^{2}}=\left[\tan ^{-1} x\right]_{0}^{1} & =\tan ^{-1}(1)-\tan ^{-1}(0) \\
& =\frac{\pi}{4} \tag{2}
\end{align*}
$$

from (1) $x$ (2) we get

$$
\begin{aligned}
& \frac{\pi}{4}=0.7837 \\
& \pi=3.3188
\end{aligned}
$$

Pb Evaluate $\int_{0}^{1} e^{-x^{2}} d x$ by dividing the range into 4 equo parts using Trapezoidal rule.
Sol:-

$$
y=e^{-x^{2}}
$$

Take $h=0.25$

$x$	0	0.25	0.5	0.75	1
$y=e^{-x^{2}} d x$	1	0.9394	0.7788	0.5698	0.3679

By Trapezoidal rule,

$$
\int e^{-x^{2}} d x=\frac{h}{2}\left[\left(y_{0}+y_{4}\right)+2\left(y_{1}+y_{2}+y_{3}\right)\right]
$$

Scanned by CamScanner

$$
\begin{aligned}
& =\frac{0.25}{2}[1.3679+2(2.288)] \\
& =0.7430
\end{aligned}
$$

Pb Evaluate $\int_{0}^{\pi / 2} \sin x d x$ by simpson's $1 / 3$ rule dividing the range into six ${ }^{0}$ equal parts.
Soln:- $\quad y=\sin x d x$
we subdivide this interval into six equal parts with $h=\frac{\pi}{12}$

$x$	0	$\pi$	$\pi / 6$	$\pi / 4$	$\pi / 3$	$51 / 12$	$\pi / 2$
$y=\sin x$	0	0.2588	0.500	0.7071	0.8660	0.9659	1.0000

by simpson's $1 / 3$ rule,

$$
\begin{aligned}
\int_{0}^{\pi / 2} \sin x d x & =\frac{h}{3}\left[\left(y_{0}+y_{6}\right)+2\left(y_{2}+y_{4}\right)+4\left(y_{1}+y_{3}+y_{5}\right)\right] \\
& =\frac{\pi}{36}[(0+1)+2(0.5+0.866)+4(0.2588+0.7071+0.9659)] \\
& =0.0873[1+2(1.366)+4(1.9318)] \\
& =1.000411
\end{aligned}
$$

$\stackrel{P}{9}$ Calculate $\int_{0}^{0.7} e^{-x} x^{1 / 2} d x$ taking 5 ordinates by simpson's $1 / 3$ rule.
Son:- $y=e^{-x} x^{1 / 2}$ length of the interval is 0.2 .
Take $h=0.04$

$x$	0.5	0.54	0.58	0.62	0.66	0.7
$y=e^{-x} x^{1 / 2}$	0.4289	0.4282	0.4264	0.4236	0.4199	0.4155

Simpson's $1 / 3$ rule is.

$$
\begin{aligned}
\int_{0.5}^{0.7} e^{-x} x^{1 / 2} d x & =\frac{h}{3}\left[\left(y_{0}+y_{5}\right)+2\left(y_{2}+y_{4}\right)+4\left(y_{1}+y_{3}\right)\right] \\
& =\frac{0.04}{3}[(0.4289+0.4155)+2(0.4264+0.4199)+ \\
& =0.0793
\end{aligned}
$$

Pb find the value of $\log 2^{1 / 3}$ from $\int_{0} \frac{x^{2}}{1+x^{3}} d x$ using simpson's $1 / 3$ rule with $h=0.25$,
Son:- $y=\frac{x^{2}}{1+x^{3}}$

$x$	0	0.25	0.5	0.75	1
$y=\frac{x^{2}}{1+x^{3}}$	0	0.0615	0.2222	0.3956	6.5
By simpson's $/ 3$ rule,					

By simpson's $1 / 3$ rule,

$$
\begin{aligned}
\int_{0}^{1} \frac{x^{2}}{1+x^{3}} d x & =\frac{h}{3}\left[\left(y_{0}+y_{4}\right)+2 y_{2}+4\left(y_{1}+y_{3}\right)\right] \\
& =\frac{0.25}{3}[0.5+2(0.2222)+4(0.0615+0.3956)] \\
& =0.2311
\end{aligned}
$$

By actual integration,

$$
\begin{aligned}
\int_{0}^{1} \frac{x^{2}}{1+x^{3}} d x & =\frac{1}{3} \int_{0}^{1} \frac{3 x^{2}}{1+x^{3}} d x \\
& =\frac{1}{3}\left[\log \left(1+x^{3}\right)\right]_{0}^{1} \\
& =1 / 3 \log (2) \\
& =\log 2^{1 / 3} \\
\therefore \log 2^{1 / 3} & =0.2311
\end{aligned}
$$

Pb Evaluate $\int_{0}^{10} \frac{d x}{1+x^{2}}$ by using (1) Trapezoidal rule
(ii) Simpson's $1 / 3$ rule.

Sorn:-
Here length of interval is 10 .
Take $h=1$

$$
y=\frac{1}{1+x^{2}}
$$

$x$	0	1	2	3	4	5	6	7	8	9	10
$y=\frac{1}{1+x^{2}}$	0	0.5	0.2	0.1	0.058	0.0385	0.0270	0.02	0.0154	0.0122	0.0041

(i) Trapezoidal rule

$$
\text { (i) Trapezoidal rule } \int_{0}^{10} \frac{d x}{1+x^{2}}=\frac{1}{2}\left[\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}+y_{7}+y_{8}+y_{4}\right)\right]
$$

$$
\begin{array}{r}
\frac{1}{2}[(1+0.0099)+2(0.5+0.2+0.1+0.0588+0.0 .85 \\
0.0270+0.02+0.0154+0.0122]]
\end{array}
$$

(ii) Simpson's $1 / 3$ rule,

$$
\begin{aligned}
& \int_{0}^{10} \frac{d x}{1+x^{2}}=\frac{h}{3}\left[\left(y_{0}+y_{10}\right)+2\left(y_{2}+y_{4}+y_{6}+y_{8}\right)+4\left(y_{1}+y_{3}+y_{5}+y_{1}+y_{2}\right.\right. \\
&=\frac{1}{3}[(1+0.0099)+2(0.2+0.058 .8+0.027+0.0154)+ \\
&4(0.5+0.1+0.0385+0.02+0.0122)]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{3}(4.2951) \\
& =1.4317
\end{aligned}
$$

(6) The velocity $v$ of a particle at pirstance 5 from $a$ point on its path is given by the table below. $\sin$ miters $0 \quad 10 \quad 20 \quad 3040 \quad 5060$ $v$ in m/sec $\begin{array}{lllllll}47 & 58 & 64 & 65 & 61 & 52 & 38\end{array}$ Estimate the time taken to travel 60 meters by. using simpson's $1 / 3$ rule.
in:- Here $h=10$

$$
\begin{aligned}
\omega \cdot k \cdot T \quad v & =\frac{d s}{d t} \\
d t & =\frac{d s}{v}
\end{aligned}
$$

To find the time taken to travel 60 meters. we have to evaluate $\int_{0}^{60} d t=\int_{0}^{60} \frac{d s}{v}$
Let $y=\frac{1}{v}$ the table values for $y$ for different values of $\delta$ are given below

$$
\begin{array}{cccccccc}
s & 0 & 10 & 20 & 30 & 40 & 50 & 60 \\
y=\frac{1}{7} & 0.0213 & 0.0172 & 0.0156 & 0.0154 & 0.0164 & 0.6192 & 0.0263
\end{array}
$$

Simpson's $1 / 3$ rule.
c: $\int_{0}^{6} y d s=\frac{h}{3}\left[\left(y_{0}+y_{6}\right)+2\left(y_{2}+y_{4}\right)+4\left(y_{1}+y_{3}+y_{5}\right)\right]$

$$
\begin{aligned}
\int_{0}^{00} d t & =\frac{10}{3}[(0.0213+0.0263)+2(0.0156+0.0164)+ \\
& =1.0627 \quad 4(0.0172+0.0154+0.0192)]
\end{aligned}
$$

$\therefore$ Time taken to travel bo meters $=1.0627$ seconds.
Pb A curve passes through the points as given in the table, find,
(1) The area bounded by the curves the $x$-axis; $x=1$ and $x=9$.
(ii) The value of the solid generated by revolving this area about the $x$-ares.

$x$	1	2	3	4	5	6	7	8	9
$y$	0.2	0.7	1	4.3	1.5	1.7	1.9	2.1	2.3
Sod:-									

son:-
(1) Here $h=1 \quad A=\int_{1} y d x$

Dimpron's $1 / 3$ rules

$$
\begin{aligned}
\int_{1}^{9} y d x & =\frac{h}{3}\left[\left(y_{0}+y_{9}\right)+2\left(y_{2}+y_{1}+y_{6}\right)+4\left(y_{1}+y_{3}+y_{5}+y_{7}\right)\right] \\
& =\frac{1}{3}[(0.2+2 \cdot 3)+2(1+1.5+1.9)+4(0.7+1+3+1.7+2.1)]
\end{aligned}
$$

$=11.5$ sq. units.
$\because$ The required Area $=11.5$ sq. units
voluene $v=\pi \int_{1}^{9} y^{2} d x$
we find $\int_{1}^{a} y^{2} d x$ using simpson's $1 / 3$ rule

$$
\begin{aligned}
& \therefore \int_{1}^{9} y^{2} d x=\frac{1}{3}\left[\left(0.2^{2}+2.3^{2}\right)+2\left(1^{2}+1.5^{2}+1.9^{2}\right)+\right. \\
&\left.4\left(0.7^{2}+1.3^{2}+1.7^{2}+2.1^{2}\right)\right] \\
&=\frac{1}{3}[5.33+13.72+37.92] \\
&=\frac{1}{3}[56.97] \\
&=18.99
\end{aligned}
$$

$\therefore$ The required volume $v=\pi(18.99)$
$=59.6588$ cubic units.
P6 Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by using Romberg's method correct to 4 decimal places. Hence deduce an approximnts value.

Son:- Let $y=\frac{1}{1+x^{2}}$ and let $I=\int_{0}^{1} \frac{d x}{1+x^{2}}$
Take $h=0.5$ the tabulated values of $y$ are

$$
\begin{array}{lll}
x & 0 & 0.5
\end{array}
$$

$y=\frac{1}{1+x^{2}} \quad 0.8 \quad 0.5$
using trapezoidal rule,

$$
\begin{aligned}
I_{1}=\int_{0}^{1} \frac{d x}{1+x^{2}} & =\frac{h}{2}\left[\left(y_{0}+y_{2}\right)+2 y_{1}\right] \\
& \left.=\frac{0.5}{2}[1+0.5)+1.6\right] \\
& =0.775
\end{aligned}
$$

Take $h=0.25$ the tabulated values of $y$ are,

$x$	0	0.25	0.50	0.75	1.00
$y=\frac{1}{1+x^{2}}$	1	0.9412	0.80	0.64	0.5

using Trapezoidal rule,

$$
\begin{aligned}
I_{2}=\int_{0}^{1} \frac{d x}{1+x^{2}} & \left.=\frac{h}{2}\left[\left(y_{0}+y_{4}\right)+2\left(y_{1}+y_{2}\right)+y_{3}\right)\right] \\
& =\frac{0.25}{2}[(1+0.5)+2(0.9412+0.80+0.64)] \\
& =0.7828
\end{aligned}
$$

Thane $h=0.125$ the tabulated values of $y$ are

$x$	0	0.125	0.25	0.375	0.50	0.625	0.750	0.875	1
$y=\frac{1}{1+x^{2}}$	1	0.9846	0.9412	0.8767	0.80	0.7191	0.64	0.5664	0.5

Using Trapeziodal rule,

$$
I_{3}=\int_{0}^{1} \frac{d x}{1+x^{2}}=\frac{h}{2}\left[\left(y_{0}+y_{8}\right)+2\left(y_{1}+y_{2}+\cdots+y_{7}\right)\right]
$$

$$
\begin{gathered}
=\frac{0.125}{2}[(1+0.5)+2(0.9846+0.9412+0.8767+0.8 \\
+0.7191+0.064+0.5664]
\end{gathered}
$$

$$
=(0.0625)[1.5+2(5.528)]
$$

$$
=0.78475
$$

using Romberg's formula for $I_{1}$ and $I_{2}$ we have

$$
\begin{aligned}
I & =I_{2}+\left(\frac{I_{2}-I_{1}}{3}\right) \\
& =0.7828+\left(\frac{0.7828-0.775}{3}\right) \\
& =0.7828+0.0026 \\
& =0.7854
\end{aligned}
$$

using Romberg's formula for $I_{2}$ and $I_{3}$ we have $I=I_{3}+\left(\frac{I_{3}-I_{2}}{3}\right)$
$=0.78475+\left(\frac{0.78475-0.7828}{3}\right)$
$=0.78475+0.00065$
$=0.7854$
$\therefore I=\int_{0}^{1} \frac{d x}{1+x^{2}}=0.7854$
By actual evaluation of the definite integral we have

$$
I=\int_{0}^{1} \frac{d x}{1+x^{2}}=\left[\tan ^{-1} x\right]_{0}^{1}=\frac{\pi}{4}-(2)
$$

from (1) and (2) we have $\frac{\pi}{4}=0.7854$
Hence $\pi \simeq 3.1416$
11) Evaluate $\int^{2} \frac{d x}{x^{2}+4}$ using Remberg's method. Hence obtain an approximate value for $\pi$.
Sol:-

$$
y=\frac{1}{x^{2}+4} \quad \text { let } I=\int_{0}^{2} \frac{d x}{x^{2}+4}
$$

Take $h=1$

$x$	0	1	2
$y$.	0.25	0.20	5

using Trapezoidal rule,

$$
\begin{aligned}
I_{1}=\int_{0}^{2} \frac{d x}{x^{2}+4} & =\frac{h}{2}\left[\left(y_{0}+y_{1}\right)+2 y_{1}\right] \\
& =0.5[(0.25+0.125)+2(0.20)] \\
& =0.3875
\end{aligned}
$$

Take $h=0.5$ the tabulated values of $y$ are

$x$	0	0.5	1.0	1.5	2
$y$	0.25	0.2353	0.20	0.160	0.125

using Trapezoidal rule.

$$
\begin{aligned}
I_{2} & =\frac{h}{2}\left[\left(y_{0}+y_{4}\right)+2\left(y_{1}+y_{2}+y_{3}\right)\right] \\
& =0.25[(0.25+0.125)+2(0.2353+0.2+0.16)] \\
& =0.3914
\end{aligned}
$$

Take $h=0.25$ the tabulated values of $y$ are,

$x$	0	0.25	0.50	0.75	1.0	1.25	1.50	1.75	2.0
$y$	0.25	0.2462	0.2353	0.2192	0.20	0.1798	0.160	0.1416	0.125

$$
I_{3}=\frac{h}{2}\left[\left(y_{0}+y_{8}\right)+2\left(y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}+y_{1}\right)\right]
$$

$$
=\left(\frac{0.25}{2}\right)\left[\begin{array}{c}
(0.25+0.125)+2(0.2462+0.2353+0.2192+ \\
0.20+0.1798+0.16+0.1416)]
\end{array}\right.
$$

$$
=(0.125)(3.1392)
$$

$$
=0.3924
$$

using Romberg's formula for $I_{1}$ and $I_{2}$ we have

$$
\begin{aligned}
I & =I_{2}+\left(\frac{I_{2}-I_{1}}{3}\right) . \\
& =0.3914+\left(\frac{0.3914-0.3875}{3}\right) \\
& =0.3953
\end{aligned}
$$

Using Romberg's formula for $I_{2}$ and $I_{3}$ we have

$$
I=I_{3}+\left(\frac{I_{3}-I_{2}}{3}\right)
$$

$$
=0.3924+\left(\left.\frac{0.3924}{3} \cdot(\log 3944) \frac{x}{x+1}\right|^{1}\right. \text { dow.ovel }
$$

$$
=0.3927
$$

$\qquad$ Since (1) and (2) are not equal We go for one mores application of Trapezoidal rule taking $h=0.125$
Take $h=0.125$ the tabulated values are

$x$	0	0.125	0.250	0.375	0.500	0.625	0.750	0.877	1.00
$y$	0.25	0.249	0.2462	0.2415	0.2353	0.2278	0.2192	0.2098	0.20
1.125	1.250	1.375	1.500	1.625	1.750	1.875	2.000		
0.1899	0.1798	0.1698	0.160	0.1506	0.1416	0.1331	0.125		

By Trapezoidal rule,

$$
\begin{array}{r}
I_{4}=\frac{h}{2}\left[\left(y_{0}+y_{16}\right)+2\left(y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}+y_{7}+y_{8}+y_{9}+y_{16}\right.\right. \\
\left.\left.y_{11}+y_{12}+y_{13}+y_{14}+y_{15}\right)\right] \\
\left.=\frac{0.125}{2}\right)[(0.25+0.125)+2(0.2949+0.2462+0.2415+ \\
0.2353+0.2278+0.2192+0.2098+0.20 \\
0.1899+0.1798+0.1698+0.160+0.1506+0.1416+ \\
0.133 D]
\end{array}
$$

using Romberg's formula for $I_{3}$ and $I_{4}$ we have

$$
\begin{aligned}
I & =I_{4}+\left(\frac{I_{4}-I_{3}}{3}\right) \\
& =0.3926+\left(\frac{0.3926-0.3924}{3}\right) \\
I & =0.3927
\end{aligned}
$$

Since (2) e (3) are almost equal we can take

$$
\begin{equation*}
I=\int_{0}^{2} \frac{d x}{x^{2}+4}=0.3927 \tag{4}
\end{equation*}
$$

By actual integration

$$
\begin{align*}
\int_{0}^{2} \frac{d x}{x^{2}+4} & =\int_{0}^{2} \frac{d x}{x^{2}+2^{2}} \\
& =\frac{1}{2}\left[\tan ^{-1}\left(\frac{x}{2}\right)\right]_{0}^{2}=\frac{1}{2}\left[\frac{\pi}{4}\right]=\frac{\pi}{8} \tag{B}
\end{align*}
$$

$\therefore$ from (A) and (B) we get $\frac{\pi}{8}=0.3927$

$$
\therefore \pi \simeq-3.1416
$$

12) Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ using (i) Trapezoidal rule
(ii) simpson's one third rule (iii) Simpson's $3 / 8$ rule (iv) weddle's rule (v) find the error in each method b comparing with the actual integration upto 4 places of decimals. Take $h=1 / 6$ for all cases.
Pron:-
here $h=1 / 6$

$$
y=f(x)=\frac{1}{1+x}
$$

$x$	0	$1 / 6$	$2 / 6$	$3 / 6$	$4 / 6$	$5 / 6$	1
$y=\frac{1}{1+x}$	1	0.8571	0.7571	0.667	0.66	0.5455	0.5

(i) Trapezoidal rule,

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{1+x} & =\frac{h}{2}\left[\left(y_{0}+y_{6}\right)+2\left(y_{1}+y_{2}+y_{3}+y_{4}+y_{5}\right)\right] \\
& \simeq \frac{1}{2}[(0.1051+0.5)+2(0.857+0.75+0.6667+0.5455)] \\
& =0.6932
\end{aligned}
$$

(ii) Simpson's $1 / 3$ rule,

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{1+x} & =\frac{h}{3}\left[\left(y_{0}+y_{6}\right)+2\left(y_{2}+y_{4}\right)+4\left(y_{1}+y_{3}+y_{5}\right)\right] \\
& \simeq \frac{1}{18}[(1+0.5)+2(0.75+0.6)+4(0.8571+0.6667+ \\
& =0.6932
\end{aligned}
$$

(iii) simpson's $3 / 8$ rule

$$
\begin{aligned}
& \text { simpson's } 3 / 8 \text { rule } \\
& \int_{0}^{1} \frac{d x}{1+x}=\frac{3 h}{8}\left[\left(y_{0}+y_{6}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}\right)+2 y_{3}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3 h}{8}\left[\left(y_{0}+y_{6}\right)+3\left(y_{1}+y_{2}+1\right.\right. \\
& \geq \frac{1}{16}[(1+0.5)+3(0.8571+0.75+0.6+0.5455)+ \\
& 2(0.6667)]
\end{aligned}
$$

$$
2(0.6667)]
$$

$$
=0.6932
$$

(iv) weddley's rule,

$$
\begin{aligned}
& \text { medley's rule, } \\
& \int_{0}^{1} \frac{d x}{1+x}=\frac{3 h}{10}\left[y_{0}+5 y_{1}+y_{2}+6 y_{3}+y_{4}+5 y_{5}+y_{6}\right]
\end{aligned}
$$

$$
\begin{aligned}
=\frac{10}{10}[10 & +0.6+5(0.5455) \\
\approx \frac{1}{20}[1+5(0.8571)+0.75+6(0.6667)+ & +0.5]
\end{aligned}
$$

$$
+0.5]
$$

$$
=0.69320
$$

V) By actual integration,

$$
\begin{aligned}
& \text { By actual integration, } \\
& \int_{0}^{1} \frac{d x}{1+x}=\left[\log _{e}(1+x)\right]_{0}^{1}=\log _{e} 2=0.6931
\end{aligned}
$$

comparing (1) and (V) error in trapezoidal rule is $0.6931-0.6949=-0.0018$
Comparing (ii) and (v) error in simpson's $1 / 3$ rule is $0.6931-0.6932=-0.0001$
comparing (iii) and (v) error in simpsons $3 / 8$ rule

$$
0.6931-0.6932=0.0001
$$

comparing (iv) and (v) error in wedding's rule

$$
0.6931-0.6932=-0,0001
$$

8.6 Gaussian Quadrature formula

The formula that we -have
Two point Gaussian Quadrature formullae
Consider the integral

$$
\begin{align*}
& I=\int_{-1}^{1} f(x) d x \\
& \text { Let } I=a_{1} f_{1}(x)+a_{2} f_{2}(x) \tag{1}
\end{align*}
$$

where the coefficients $a_{1}, a_{2}$ and the functions arguments $x_{1}, x_{2}$ are to be determined.
To determine the four unknowns $a_{1}, a_{2}, x_{1}, x_{2}$ we require four conditions. For this purpose we impose the conditions that for equation $(1)$ is valid for any polynomial of degree three or less.

In particular (1) is true if $f(x)=x^{3}, f(x)=x^{2}$, $f(x)=x$ and $f(x)=1$

$$
\begin{equation*}
f(x)=x^{3} \text { gives } a_{1} x_{1}^{3}+a_{2} x_{2}^{3}=\int_{-1}^{1} x^{3} d x \tag{2}
\end{equation*}
$$

ie) $a_{1} x_{1}^{3}+a_{2} x_{2}^{3}=0$
$111^{14}$

$$
\begin{align*}
& f(x)=x^{2} \text { gives } a_{1} x_{1}^{2}+a_{2} x_{2}^{2}=2 / 3 \\
& f(x)=x \text { gives } a_{1} x_{1}+a_{2} x_{2}=0 \\
& f(x)=1 \text { gives } a_{1}+a_{2}=2 \tag{5}
\end{align*}
$$

Multiplying (4) lay $x_{1}^{2}$ and subtracting from (2) we get,

$$
\begin{aligned}
& a_{2}\left(x_{2}^{3}-x_{2} x_{1}^{2}\right)=0 \\
& \therefore a_{2} x_{2}\left(x_{2}^{2}-x_{1}^{2}\right)=0
\end{aligned}
$$

(i) $a_{2} x_{2}\left(x_{2}+x_{1}\right)\left(x_{2}-x_{1}\right)=0$
$\therefore$ Either $a_{2}=0$
(or) $x_{2}=0$
(or) $x_{1}=x_{2}$
(or) $x_{1}=-x_{2}$
The cares $a_{2}=0, x_{2}=0$ and $x_{1}=x_{2}$ give rise to invalid equations and hence we choose $x_{1}=-x_{2}$
$\therefore$ equation (2) becomes

$$
a_{1}-a_{2}=0
$$

from (5) and (6) we get $a_{1}=a_{2}=1$
Now from (3) we get $x_{1}^{2}+x_{1}^{2}=2 / 3$ and 1
hence

$$
\begin{aligned}
I=\int_{-1} f(x) d x & =f\left(\frac{1}{\sqrt{3}}\right)+f\left(\frac{-1}{\sqrt{3}}\right) \\
& =f(0.5773)+f(-0.5773)
\end{aligned}
$$

This is known as Gauss two point quadrature formula Thus by adding two values of the function $f(x)$ we get and approximate value of the integral and the formula gives the exact value if $f(x)$ is any polynomial of degree 3 or less.
Remark:-1
In deriving the Gaussian two point quadrature formula we have assumed that the integration is from -1 to 1 which simplified the mathematical Calculation.
If the limit is from $a$ to $b$, then we shall apply $a$ suitable change of variable to bring the integration from -1 to 1 . we replace the given variable $x$ by another variable $t$ which are related by the following formula

$$
x=\frac{(b-a) t+(b+a)}{2}
$$

clearly when $x=a, t=-1$ and when $x=b, t=1$ and

$$
\begin{aligned}
& d x=\left(\frac{b-a}{2}\right) d t \\
& \therefore \int_{a}^{b} f(x) d x=\left(\frac{b-a}{2}\right) \int_{-1}^{1} f\left[\frac{(b-a) t+(b+a)}{2}\right] d t
\end{aligned}
$$

Remark 2:-
Gaussian two point-quarature formula requires only two functional evaluations and gives a good estimate Of the value of the integrals quadrature formula and hence find the value of $\pi$.

Let $f(x)=\frac{1}{1+x^{2}}$
Here $a=0$ and $b=1$
To change the limit of the integration from -1 to 1
put,

$$
\begin{aligned}
x & =\frac{(b-a) t+b+a}{2}=\frac{t+1}{2} \\
\therefore I & =\int_{0}^{1} \frac{d x}{1+x^{2}}=\frac{1}{2} \int_{-1}^{1} f\left(\frac{t+1}{2}\right) d t \\
& =\frac{1}{2} \int_{-1}^{1} \frac{1}{1+\left(\frac{t+1}{2}\right)} d t=2 \int_{-1}^{1} \frac{d t}{t^{2}+2 t+5} \\
& =\int_{-1}^{1} g(t) d t \text { where } g(t)=\frac{2}{t^{2}+2 t+5}
\end{aligned}
$$

By Gauss two point quadrature formula we have

$$
\begin{align*}
& I=\int_{-1}^{1} g(t) d t=g\left(\frac{1}{\sqrt{3}}\right)+g\left(\frac{-1}{\sqrt{3}}\right) \\
& \therefore I=2\left[\frac{1}{\frac{1}{3}+\frac{2}{\sqrt{3}}+5} \$+\frac{1}{\frac{1}{3}-\frac{2}{\sqrt{3}}+5}\right] \\
& \therefore I=0.7868 \tag{1}
\end{align*}
$$

By actual integration

$$
\begin{equation*}
I=\int_{0}^{1} \frac{d x}{1+x^{2}}=\left[\tan ^{-1} x\right]_{0}^{1}=\tan ^{-1}(1)-\tan ^{-1}(0)=\pi / 4- \tag{2}
\end{equation*}
$$

$\therefore$ from (1) A (2) we have

$$
\begin{aligned}
& \frac{\pi}{4}=0.7868 \\
& \therefore \pi=3.1472
\end{aligned}
$$

Gaussian three point formula is given by

$$
\begin{aligned}
I= & 0.55555555 \mathrm{~g}(-0.77459667)+0.88888889 \mathrm{~g}(0) \\
& +0.55555555 \mathrm{~g}(0.77459667) \\
= & 0.274293787+0.355555548+0.155417688 \\
= & 0.785267023
\end{aligned}
$$

The corresponding approximate value of $\pi$ is given by

$$
\begin{aligned}
\pi & =4(0.785267023) \\
\therefore \pi & =3.141068092
\end{aligned}
$$

P3) find $\int_{0}^{\pi / 2} \sin x d x$ by two and three point Gaussian quadrature formula.
son: Here $f(x)=\sin x, a=0$ and $b=\pi / 2$
To change the limit of the integration format -1 to 1 put

$$
\begin{aligned}
x & =\frac{(b-a) t+(b+a)}{2}=\frac{\pi}{4}(t+1) \\
\therefore I & =\int_{0}^{\pi / 2} \sin x d x=\frac{\pi}{4} \int_{-1}^{1} f\left(\frac{\pi}{4}(t+1)\right) d t \\
& =\pi / 4 \int_{-1}^{1} \sin \left[\frac{\pi}{4}(t+1)\right] d t \\
& \left.=\int_{-1}^{1} g(t) d t \quad \text { where } d t=\frac{\pi}{4} \sin \left[\frac{\pi}{4} t t+1\right)\right]
\end{aligned}
$$

By Gaussian two point; qudature formula we have

$$
\begin{aligned}
& y \text { Gaussian two point quatre } \\
& \begin{aligned}
I & =\int_{-1}^{1} g(t) d t=g(0.5773)+g(-0.5773) \\
\therefore I & =\frac{\pi}{4} \sin \left[\frac{1.5773 \pi}{4}\right]+\frac{\pi}{4} \sin \left[\frac{0.4227 \pi}{4}\right] \\
& =\frac{\pi}{4}(1.2713) \\
& =0.9985
\end{aligned}
\end{aligned}
$$

Gaussian three point formula is given by

$$
\begin{aligned}
& \text { Gaussian three point formula } \\
& \begin{aligned}
I & =0.55555555 \mathrm{~g}(-0.77459667)+0.88888889 \mathrm{~g}(0) \\
& +0.55555555 \mathrm{~g}(0.77459667) \\
& =0.076841659+0.49365366+0.429512797 \\
& =1.000008116
\end{aligned}
\end{aligned}
$$

we note that the actual value of the integral is 1 and that gaussian (B quadrature formulae provide a good approximation.
[) Evaluate $I=\int_{-1}^{p} e^{-x^{2} \cos x} d x$ by Gauss two and three point quadrature formula.
Soln:-
Gauss, two point quadrature formula is,

$$
I=\int_{-1}^{1} f(x) d x=f(0.5773)+f(-0.5773)
$$

Here $f(x)=e^{-x^{2} \cos x}$

$$
\begin{aligned}
\therefore I & =0.716536528+0.716536528 \\
& =1.433073056
\end{aligned}
$$

Gauss three point quadrature formula is

$$
\begin{aligned}
I= & 0.55555555+f(-0.77459667)+0.88888889 f(0) \\
& +0.55555555+(0.77459667) \\
= & 0.304867487+0.88888889+0.30486787 \\
= & 1.498623865
\end{aligned}
$$

$\frac{8.7 \text { Numerical }}{\text { If }(x, y) \text { is a continuous } \frac{\text { E unction Double }}{\text { funtegrals }} \therefore \text { defined on a }}$ closed rectangle

$$
R=\{-(x, y) \mid a \leq x \leq b, c \leq y \leq d\}
$$

then $\iint_{R} f(x, y) d x d y$ can be expressed as

$$
\begin{aligned}
& \text { then } \iint_{R} f(x, y) d x d y \text { can be expressed as } \\
& \int_{a}^{d} \int_{a}^{b} f(x, y) d x d y \text { (or) } \int_{a}^{d} f(x, y) d y d x
\end{aligned}
$$

In this section we extend trapezoidal rule and simpson's rule for numerical integration of double integrals in which the limits of the integrals are constants.
Trapezoidal rule for double integrals:consider,

$$
I=\int_{y_{j}}^{y_{j+1}} \int_{x_{i}}^{x_{i+1}} f(x, y) d x d y
$$

where $x_{i+1}=x_{i}+h$ and $y_{j+1}=y_{j}+k$
By applying trapezoidal rule to inner integral, we get

$$
I=\frac{h}{2} \int_{y_{j}}^{y_{j+1}}\left[f\left(x_{i}, y\right)+f\left(x_{i+1}, y\right)\right] d y
$$

again applying trapezoidal, rule, we have

$$
\begin{align*}
I & \left.=\frac{h k}{4}\left[f\left(x_{i}, y_{i}\right)+f\left(x_{i+1}, y_{j}\right)+f\left(x_{i}, y_{j+1}\right)+f_{i+1}, j+1\right)\right] \\
\therefore I & =\frac{h k}{4}\left[f_{i, j}+f_{i+1, j}+f_{i, j+1}+f_{i+1}, j+1\right] \tag{0}
\end{align*}
$$

where $f_{i, j}=f\left(x_{i}, y_{j}\right)$
To evaluate

$$
I=\int_{y_{j}}^{y_{j}+2} \int_{x_{i}}^{x_{i+2}} f(x, y) d x d y
$$

$\ldots$ express. I as a sum of four double integrals.

$$
\begin{aligned}
& \int_{y_{j}}^{\int_{x_{i}+1}} f(x, y) d x d y, \int_{y_{j}}^{y_{j+1}} \int_{x_{i+1}}^{y_{i+2}} f(x, y) d x d y \\
& \int_{y_{j+1}}^{y_{i+2}} \int_{x_{i}}^{x_{i+1}} f(x, y) d x d y \text { and } \int_{y_{j+1}}^{y_{j+2}} \int_{x_{i+1}}^{x_{i+2}} f(x, y) d x d y
\end{aligned}
$$

Applying formula 1 to each of there double integrals and adding the results, we get

$$
\begin{aligned}
& I=\frac{h k}{4}\left[f_{i, j}+2 f_{i+1}, j+f_{i+2, j}+2 f_{i, j+1}+4 f_{i+1}, j+1\right. \\
& \left.+2 f_{i+2, j+1}+f_{i, j+2}+2 i+1, j+2+f_{i+2}, j+2\right]
\end{aligned}
$$

The above method Canbe extended in a natural waythen the integral of integration in subdivided into $N$
sub-intervals. This is illustrated in problem (3) Simpson's one-third rule for double integrals:-
Consider,

$$
I=\int_{j+2}^{\text {sider }} \int_{x_{i}}^{x_{i+2}} f(x, y) d x d y
$$

Applying simpsons $y_{3}$ rule, we have

$$
\begin{aligned}
I= & \left.\frac{h}{3} \int_{j+2)} f\left(x_{i}, y\right)+4 f\left(x_{i+1}, y\right)+f\left(x_{i+2}, y\right)\right] d y \\
= & \frac{h k}{9}\left[f\left(x_{i}, y_{i}\right)+4 f\left(x_{i}, y_{j+1}\right)+f\left(x_{i}, y_{j+2}\right)\right]+ \\
& \left.4\left\{f\left(x_{i}+1, y_{j}\right)+4 f\left(x_{i+1}, y_{j+1}\right)+f\left(x_{i+1}, y_{j+2}\right)\right)\right]
\end{aligned}
$$

on simplification, we get

$$
\begin{gathered}
I=\frac{h k}{9}\left[f_{i, j}+f_{i, j+2}+f_{i+2, j}+f_{i+2} ; j+2+4\left(f_{i, j+1}+f_{i+1, j}+\right.\right. \\
\left.f_{i+1, j+2}+f_{i+2, j+1}+16 f_{i+1, j+1}\right]
\end{gathered}
$$

(1) Evaluate $\int_{0}^{1} \int_{0}^{1} x y d x d y$ using (i) Trapezoidal rule
(ii) simpson's rule with $h=k=1 / 2$

Sol:-
Let $f(x, y)=x y$
the values of $f(x, y)$ at the nodal points are given in the following table,

$y$	$x$	0	0.5
0	0	0	0
0.5	0	0.25	0.5
1	0	0.5	1

(i) Trapezoidal rule.

$$
\begin{aligned}
I= & \frac{h k}{4}\left[f_{i, j}+2 f_{i+1, j}+f_{i+2, j}+2 f_{i, j+1}+\right. \\
& 4 f_{i+1, j+1}+2 f_{i+2, j+1}+f_{i, j+2}+2 f_{i+1}, j+2 \\
= & \frac{(0.5)(0.5)}{4}[4(0.25)+2(0.5)+2(0.5)+1] \\
= & 0.25
\end{aligned}
$$

(ii) Simpson's rule

$$
\begin{aligned}
I & =\frac{h k}{9}\left[f_{i, j}+f_{i, j+2}+f_{i+2, j}+f_{i+2, j+2}+4\left(f_{i, j+1}+\right.\right. \\
& =\frac{(0.5)(0.5)}{9}[0+0+0+1+4+(0+0+0.5+0.5)+16(0.25)] \\
& =0.25
\end{aligned}
$$

Note:-
we observe that in this case both methods gives the exact value for $I$.
\$1 Evaluate $I=\int_{0}^{1 / 2} \int_{0}^{1 / 2} \frac{\sin x y}{1+x y} d x d y$ using simpson's rule with
soon:-
Let $f(x, y)=\frac{\sin x y}{1+x y}$
The values of $f(x, y)$ at the nodal points are given in the following table

$y^{x}$	0	$1 / 4$	$1 / 2$
0	0	0	0
$1 / 4$	0	0.0588	0.1108
$1 / 2$	0	0.1108	0.1979

Scanned by CamScanner
by simpson's rule.

$$
\begin{aligned}
I & =\frac{h k}{9}\left[f_{i, j}+f_{i, j+2}+f_{i+2, j}+f_{i+2, j+2}+4\left(f_{i, j+1}+f_{i+1, j}\right.\right. \\
& =\frac{1}{144}[0+0+0+0+1979+4(0+0+0.1108+0.1108)+16(0.0588)] \\
& =0.01406,2
\end{aligned}
$$

13 Evaluate $\dot{I}=\int_{1}^{2}\left(\frac{1}{x+y}\right) d x d y$ using trapezoidal rule with $h=k=0.25$
soon:-
The nodal points are given by $\left(x_{i}, y_{j}\right)$ where $x_{i}=1+i h$ and $y_{j}=1+j k \quad(i, j=0,1,2,3,4)$
The values of $f(x, y)=\frac{1}{x+y}$ at the nodal points are given in the following table

$y x$	1	1.25	1.5	1.75	2
1	0.5	0.4444	0.4	0.3636	0.3333
1.25	0.4444	0.4	0.3636	0.3333	0.3077
1.5	0.4	0.3636	0.3333	0.3077	0.2857
1.75	0.3636	0.3333	0.3077	0.2857	0.2667
2	0.3333	0.3077	0.2857	0.2667	0.25

Now,

$$
\begin{aligned}
& \text { Now }=I_{1}+I_{2}+I_{3}+I_{4} \text { where } \\
& I_{1}=\int_{1}^{1.5} \int_{1}^{1.5} f(x, y) d x d y I_{2}=\int_{1}^{1.5} f(x, y) d x d y \\
& I_{3}=\int_{1.5}^{2} \int_{1}^{1.5} f(x, y) d x d y \text { sand } I_{4}=\int_{1.5}^{2} \int_{1.5}^{2} f(x, y) d x d y
\end{aligned}
$$

By Trapezoidal rule is f yo sewlov ant prifstitade

$$
\begin{aligned}
& I_{1}{ }^{\prime}=\frac{h_{k}}{4}[f(1.1)+2 f(1.25,1)+f(1.5,1)+4 f(1.25,1.25) \\
& +2 f(1.5,1.5)+f(1,1.5)+2 f(1.25,1.5)+f(1.5,1.5)] \\
& =
\end{aligned}
$$

## $=0.0871$

By a similar computation we get,

$$
I_{2}=\frac{1}{64}[f(1.5,1)+2 f(1.75,1)+f(2,1)+4 f(1.75,1.25)+
$$

$$
2 f(211.25)+f(1.5,1.5)+2 f(1.75,1.5)+f(21.5)]
$$

$$
\begin{aligned}
& =\frac{1}{64}[0.4+2(0.3636)+0.3333+4(0.3333)+2(0.3077) \\
& +0.2332+2(0.3077)+0.2857]
\end{aligned}
$$

$$
+0.3333+2(0.3077)+0.28577
$$

$$
=0.0726
$$

$\| 1^{1 y} I_{3}=0.0726$ and $I_{4}=0.0622$
Hence $I=I_{1}+I_{2}+I_{3}+I_{4}$

$$
\begin{aligned}
& =0.0871+0.0726+0.0726+0.0622 \\
& =0.2945
\end{aligned}
$$

## unik-文

Numerical solutions of ordinary differential equation 10.1 Taylor's Series method

Consider the first order differential equation

$$
\begin{align*}
& \frac{d y}{d x}=f(x, y) \\
& \text { with } y\left(x_{0}\right)=y_{0} \cdot 0  \tag{1}\\
& \text { Differentiating (1) with respect to } x \text {, we get } \\
& \frac{d^{2} y}{d x^{2}}=\frac{\partial f}{\partial x}+\frac{\partial f f^{\prime}}{\partial y} y^{\prime} \frac{\partial f}{\partial x}(t)+\frac{\partial f}{\partial y}\left(\frac{d y}{d x}\right) \\
& \text { (e) } y^{\prime \prime}
\end{align*}=f_{x}+f_{y} y^{\prime}-\text { (2) } \frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime} .
$$

Differentiating successively we can obtain. $y^{\prime \prime \prime}, y^{\prime \prime \prime \prime}, \ldots 011$ putting $x=x_{0}$ and $y=y_{0}$ we get $y_{0}^{\prime \prime}, y_{0}^{\prime \prime}, y_{0}^{\prime \prime \prime}, \ldots$ The Taylor's series expansion of $y(x)$ about $x=x_{0}$ is given by

$$
\begin{align*}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\underbrace{\left(x-x_{0}\right)^{2}} y^{\prime \prime}\left(x_{0}\right)+ \\
& =y_{0}+\left(x-x_{0}\right) y_{0}^{\prime}+\frac{\left(x-x_{0}\right)^{2}}{2!} y_{0}^{\prime \prime}+\cdots \tag{3}
\end{align*}
$$

Substituting the values of $y_{0}, y_{0}^{\prime}, y_{0}{ }^{\prime \prime}, b, a m e n$ $y(x)$ for all values of $x$ for which (3) converges. I

Let $x_{1}=x_{0}$ th and let

$$
y\left(x_{1}\right)=y_{1}=y_{0}+\frac{h}{h} y_{0}^{\prime}+\frac{h^{2}}{2\left(y_{0}^{\prime \prime}+.\right.}
$$

once $y_{1}$ is known w he can compute $y_{1}^{\prime}, y_{1} 10$.
from (1), (2) etc
Then $y$ can be expanded in a Taylor's series about $x=x$, and we have

$$
=y\left(x_{2}\right)=y_{2}=y_{1}+\frac{h}{1!} y_{1}^{\prime \prime}+\frac{h^{3}}{3!} y_{1}^{\prime \prime}+\ldots
$$

Contiming in this way we find the soln $y(x)$
pb using Taylor's method solve $\frac{d y}{d x}=1+x y$ with $y_{0}=2$
Find (i) $y(0.1)$ (ii) $y(0.2)$ (and (iii) $y(0.3)$
goon-
(i) The Taylor's algorithm is

$$
\begin{equation*}
y_{1}=y_{0}+\frac{h}{1!} y_{0}^{\prime}+\frac{h^{2}}{2!} y_{0}^{\prime \prime}+\frac{h^{3}}{3!} y_{0}^{\prime \prime \prime}+\cdots \tag{1}
\end{equation*}
$$

Here $x_{0}=0, y_{0}=2$ and $h=0.1$
Given $y^{\prime}=\frac{d y}{d x}=1+x y$
Successively differentiating (2) we get

$$
y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}=y+x y^{\prime}=
$$

Now',

$$
y^{\prime \prime \prime}=2 x^{2}=2 y^{\prime}+x y^{\prime \prime \prime} \text { of } \frac{y^{\prime}+x y^{\prime \prime}+y^{\prime}}{2 y^{\prime \prime} 4 x y \frac{1}{\delta}+y^{\prime} y^{\prime \prime}+{ }^{2} x}
$$

$$
\begin{aligned}
& y_{0}^{\prime}=y^{\prime}\left(x_{0}, y_{0}\right)=1+3 x_{0} y_{0}=1 \\
& y_{0}^{\prime \prime}=\left(y^{\prime \prime}\right)\left(x_{0}, y_{0}\right)=y_{0}+x_{0} y_{0}^{\prime},=2 \\
& y_{0}^{\prime \prime \prime}=\left(y^{\prime \prime \prime}\right)\left(x_{0}, y_{0}\right)=2 y_{0}^{\prime}+x_{0} y_{0}^{\prime \prime}=2
\end{aligned}
$$

pritoitnarstatios
using there (1) (1) we get, $\left[14 \mathrm{l}^{\prime}+{ }^{\prime \prime} \beta x\right] \mathrm{s}={ }^{\prime \prime \prime} \mathrm{s}$

$$
\begin{aligned}
y_{1} & =2+\frac{(0.1)}{1!}+\frac{(0.1)^{2}}{2!} \times 2+\frac{(0.1)^{3}}{3!1} \times 2 \\
y(x) & =2.1103 \\
\therefore y(0,1) & =2.1103
\end{aligned}
$$

(ii) The Taylor's algorithm for the $=$ most next approximation

$$
\begin{aligned}
& \text { is, } \\
& \left.y_{l}=y^{\prime}\left(x_{1}, y_{1}\right)=1+x_{1} y_{1}=1+(0.1) \frac{(1.0)}{!\delta}=1 \times 21103\right)+1.0+0={ }_{1} \mu \\
& y_{1}^{\prime \prime}=\left(y^{\prime \prime}\right)\left(x_{1}, y_{1}\right)=y_{1}+x_{1} y_{1}^{\prime}=2.1103+(0.1)(1.21103) \\
& \\
& =2.2314 \\
& y_{1}^{\prime \prime \prime}=y^{\prime \prime \prime}\left(x_{1}, y_{1}\right)=2 y_{1}^{\prime}+x_{1} y_{1}^{\prime \prime \prime}=2(1.21103)+(0.1)(2.214)
\end{aligned}
$$

$\therefore$ (3) becomes

$$
\begin{aligned}
& \begin{aligned}
y_{2} & =2.1103+\frac{(0.1)}{1!}(1.21103)+\frac{(0.1)^{2}}{2!}(2.2314)+\frac{(0.1)^{3}}{3!}(2.6452) \\
& =2.2430
\end{aligned} \\
& =2.2430 \\
& \text { (1) } 2!u^{2} x=\frac{10}{x / 0} \text { novimit) } \\
& \therefore y(0.2)=2.2430
\end{aligned}
$$

(iii) The Taylor's algorithm for third approximation is,

$$
\begin{equation*}
y_{3}=y_{2}+\frac{h}{1!} k_{2}^{\prime}+\frac{h^{2}}{2!} y_{2}^{\prime \prime}+\frac{h^{3}}{3!} y_{2}^{\prime \prime \prime} \tag{4}
\end{equation*}
$$

Now,

$$
\begin{aligned}
& \text { (4) becomes } \\
& \begin{aligned}
y_{3} & =2.2430+(0.1)(1.4486)+\frac{(0.1)^{2}}{2!}(2.53272)+\frac{(0.1)^{3}}{3!}(3.4031) \\
& =2.4011 \\
\therefore y(0.3) & =2.4011
\end{aligned}
\end{aligned}
$$

P6 using Taylor's method, find $y(0.1)$ correct to 3 decimal places from $\frac{d y}{d x}+2 x y=1, y_{0}=0$
solon:-
Given $\quad \frac{d y}{d x}=y^{\prime}=1-2 x y$
The Taylor's algorithm is

$$
y_{1}=y_{0}+\frac{h}{1!} y_{0}^{\prime}+\frac{h^{2}}{2!} y_{0}^{\prime \prime}+\frac{h^{3}}{3!} y_{0}^{\prime \prime \prime}+\cdots .
$$

Here $x_{0}=0, y_{0}=0$ and $h=0.1$. Now successively differentiating (1), we get

$$
\begin{aligned}
y^{\prime \prime} & =-2\left(y+x y^{\prime}\right)+2 \\
y^{\prime \prime \prime} & =-2\left[x y^{\prime \prime}+2 y^{\prime}\right] \\
\therefore y^{\prime}\left(x_{0}, y_{0}\right) & =y_{0}^{\prime \prime}=101-2 x y \frac{1}{3}-2(0)(0)=1-0 \\
y^{\prime \prime}\left(x_{0}, y_{0}\right) & =y_{0}^{\prime \prime}=0 \Rightarrow+2 x_{0}-2\left(y_{0}+x_{0} y_{0}^{\prime}\right) \mid 1=2(0+0)=0 \\
y^{\prime \prime \prime}\left(x_{0}, y_{0}\right) & =y_{0}^{\prime \prime}=-4
\end{aligned}
$$

Substituting the value $y_{0}^{\prime}, y_{0}^{\prime \prime}, \cdots$ we get $=-4$

$$
\begin{aligned}
y_{1} & =0+0.1+\frac{(0.1)^{2}}{2!} \times 0+\frac{(0.1)}{3!}(-4) \\
(2011 & 0.0 \\
& =0.0933 \\
\therefore y(0.1) & =0.0993
\end{aligned}
$$

16 using Taylor's series method find $y$ at $x=1-1$ and (s. 1.2 by (solving $\frac{d y}{d x}=x^{2}+y^{2}$ given $y(1)=2 \cdot 3$
soon:-
Given $\frac{d y}{d x}=x^{2} y^{2}$
Love $x_{n}=1, y_{0}=2.3$ and $h=0.1$
(i) The Taylor's series expansion is

$$
\begin{equation*}
y_{1}=y_{0}+\frac{h}{1!} y_{0}^{\prime}+\frac{h^{2}}{2!} y_{0}^{\prime \prime}+\frac{h^{3}}{3!} y_{0}^{\prime \prime \prime}+ \tag{2}
\end{equation*}
$$

Differentiating (1) Successively with respec to $x$ we get,

$$
\begin{aligned}
& y^{\prime \prime}=2 x+2 y y^{\prime} \\
& y^{\prime \prime \prime}=2+2\left(y y^{\prime \prime}+y^{\prime 2}\right) \\
& y_{0}^{\prime \prime}=x_{0}^{\prime 2}+y_{0}^{2 \prime}=6 \cdot 29 \\
& y_{0}^{\prime \prime}=2 x_{0}+2 y_{0}^{\prime} y_{0}^{\prime}=30.934 \\
& y_{0}^{\prime \prime}=2+2\left(y_{0} y_{0}^{\prime \prime}+y_{0}^{\prime 2}\right)=223.4246
\end{aligned}
$$

using this in, we get.

$$
\begin{aligned}
& \text { using this in, (2) we get } \\
& \begin{aligned}
y(1.1) & =y_{1}=2.3+\frac{0.1}{1}(6.29)+\frac{(0.1)^{2}}{2}(30.934)+\frac{(0.1)^{3}}{6}(223.4246) \\
& =3.1209
\end{aligned}
\end{aligned}
$$

Here $x_{1}=1.1$ and $y_{1}=3.1209$
(ii) We have the Taylor's series expansion

$$
\begin{align*}
& y_{2}=y_{1}+\frac{h}{1!} y_{1}^{\prime}+\frac{h^{2}}{2!} y_{1}^{\prime \prime}+\frac{h^{3}}{3!} y_{1}^{\prime \prime \prime}+\cdots  \tag{3}\\
& y_{1}^{\prime}=y^{\prime}\left(x_{1}, y_{1}\right)=x_{1}^{2}+y_{1}^{2}=10.95  \tag{3}\\
& y_{1}^{\prime \prime}=y^{\prime \prime}\left(x_{1}, y_{1}\right)=2 x_{1}+2 y_{1} y^{\prime}=70.5477
\end{align*}
$$

$$
y_{1}^{\prime \prime}=y^{\prime \prime}\left(x_{1}, y_{1}^{\prime}\right)=2 x_{1}+2 y_{1} y^{\prime}=70.5477 \mathrm{~A}
$$

$$
\begin{aligned}
& y_{1}^{\prime \prime \prime}=\left(y^{\prime \prime \prime}\right)\left(x_{1}, y_{1}\right)=2+2\left(y_{1} y_{1}^{\prime \prime}+y_{1}^{\prime 2}\right) \\
&=48919496
\end{aligned}
$$

$$
=682.949 .6
$$

(3) becomes
$\begin{aligned} y_{2} & =3.1209+0.1(10.95)+\frac{(0.1)^{2}}{2}(70.5477)+\frac{(0.1)^{3}}{6}(68.2 .1496) \\ & =4.6823\end{aligned}$
introvs仿4.6823
Hence,
$y(1.1)=3.1209$ and $y(1.2)=4.6823$ bousing wT 1100 10.2 picard method $1+1+0$ nom Consider the first order, differential equation $=\frac{u b}{x b}$
with initial condition $y=y_{0}$ when $x=x_{0}$ We now replace (1) by an equivalent integral equation. Integration ${ }_{x}(1)$ between limits, we get $B=$

$$
\int_{1}^{y} d y=\int_{x_{n}}^{x} f(x, y) d x
$$

ii) $\hat{y}=y_{0}+\int_{x_{0}}^{x} f(x, y) d x$

This, is an integral equation which contains the unknown $y$ under the integral sign.
(2) is equivalent to (1) since any soln of (2) is a soon
(1) and vice verse.

The first approximation $y_{1}$ to the son is obtained by putting $y=y_{0}$ in $f(x, y)$ and from (2) we have

$$
y_{1}=y_{0}+\int_{x_{0}}^{x} f(x, y 0) d x
$$

MII for the second approximation $y_{2}$, pul $y^{\prime}=y_{1}$, in $f(x, y)$ and from (2) we have

$$
y_{2}=y_{0}+\int_{x_{0}}^{x} f\left(x, y_{1}\right) d x
$$

continuing this process the $n^{\text {th }}$ approximation is given by

$$
y_{n}=y_{0}+\int_{x_{0}}^{x} f\left(x, y_{n-1}\right) d x
$$

This is known as picard's interation formula.?
Note:-
picard's method gives a sequence of approximations $y_{1}, y_{2}, \ldots$ each giving a better result than the proceeding one. But this can be applied only to equations in which the Successive integration can be obtained easily.
Pb using picard's method solve $\frac{d y}{d x}=1+x y$ with $y(0)=2$. Find $y(0.1, y(0.2)$ and $y(0.3)$
Sol:-
The picard's interaction formula for the differential equation.

$$
\begin{aligned}
& \text { equation. } \\
& \frac{d y}{d x}=f(x, y) \text { is } y_{n}=y_{0}+\int_{x_{0}}^{x} f\left(x, y_{n-1}\right) d x \text { where } n=1,2 \ldots
\end{aligned}
$$

Given $f(x, y)=1+x y, x_{0}=0$ and $y_{0}=2$ st
$\therefore$ The first approximation is ( $) \quad(f, x)=\frac{v /}{x / 0}$
arian $y_{1}=y_{0}+\int_{x_{0}}^{x} f\left(x, y_{0}\right) d x, \psi=\psi$ notional loitivis show

$$
\begin{aligned}
& x_{0} \Rightarrow \operatorname{dof}\left(x p y o x=f+x y_{0}=1+x^{2} \cdot 2\right. \\
& \left.=2+\int_{0}^{x}(1+2 x)^{2}\right) d x \text { nosentod (1) noitorpitas } \\
& =2+x+x^{2}
\end{aligned}
$$

The second approximation is.

$$
\begin{aligned}
y_{2} & =y_{0}+\int_{x_{0}}^{x} f\left(x, y_{1}\right) d x \\
& =2+\int_{0}^{x}\left[1+x\left(2+x+x^{2}\right)\right] d x \\
& =2+x+x^{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}
\end{aligned}
$$

The third approximation is,

$$
\begin{aligned}
y_{3} & =y_{0}+\int_{x_{0}}^{x} f\left(x_{1} y_{2}\right) d x \\
& =2+\int_{x_{0}}^{x}\left[1+x\left(2+x+x^{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}\right) d x\right. \\
& =2+x+x^{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\frac{x^{5}}{15}+\frac{x^{6}}{26} \text { (1) }
\end{aligned}
$$

putting $x=0.1,0.2$ and 0.3 in (1) we get

$$
\begin{aligned}
& y_{1}=y(0.1)=2.1104 \\
& y_{2}=y(0.2)=2.2431 \\
& y_{3}=y(0.3)=2.4012
\end{aligned}
$$

ph find the value of $y(0.1)$ by picard's method given

$$
\frac{d y}{d x}=\frac{y-x}{y+x} \cdot y(0)=1
$$

801n:-
The picard's interative formula for the differential equation $\frac{d y}{d x}=f(x, y)$ is

$$
\begin{aligned}
& \text { nation } \frac{d y}{d x}=f(x, y) \\
& y_{n}=y_{0}+\int_{x_{0}}^{x} f(x, y n-1) d x \text { where } n=1,12,3 \ldots
\end{aligned}
$$

$x_{0}$
Here $f(x, y)=\frac{y-x}{y+x}, x_{0}=0$ and $y_{0} \pm 1$
$\therefore$ The first approximation is.
$\quad y_{1}=y_{0}+\int_{0}^{x} f\left(x, y_{0}\right) d x w$

$$
\begin{aligned}
& =1+\int_{0}^{x}\left(\frac{1-x}{1+x}\right) d x \text { soitoups lota iroppit now n } \\
& =1+\int_{0}^{x}\left(-1+\frac{2}{1+x}\right) \frac{1 b}{d x} \text { (By partial fraction) } \\
& =1+\left[-x+2 \log _{e}\left(\frac{1+x}{1+x}\right)\right]_{0}^{x}
\end{aligned}
$$

$$
=1-x+2 \log _{e}(1+x)
$$

putting $x=0.1$ we get $1, y_{1}=y(0.1)$

$$
\begin{aligned}
& =y(0.1) \\
& =1-0.1+2 \log _{e}(1+0.11)
\end{aligned}
$$

$$
\begin{aligned}
& =0.9+2 \times 0.0953 \\
& =1.0906 .
\end{aligned}
$$

P1 find the successive approximate soon of the differentia equation $y^{\prime}=y, y(0)=1$ by picard's method and compare it with the exact solon.
sola:-
picard's iteration formula is given by y $y_{n}=y_{0}+\int_{x_{0}}^{x} f\left(x, y_{n-1}\right) d x$ where $n=1,2 \ldots$
Here $f(x, y)=y, x_{0}=0$ and $y_{0}=1$
$\therefore$ The first approximation son is

$$
\begin{aligned}
y_{1} & =y_{0}+\int_{0}^{x} f\left(x, y_{0}\right) d x \\
& =1+\int_{0}^{x} d x=1+x
\end{aligned}
$$

The second approximate soln is

$$
\begin{aligned}
y_{2} & =y_{0}+\int_{0}^{x} y_{1} d x \\
& =1+\int_{0}^{x}(1+x) d x \\
& =1+x+\frac{x^{2}}{2}
\end{aligned}
$$

The third approximate soln is

$$
\begin{aligned}
y_{3} & =y_{0}+\int_{0}^{x} y_{2} d x \\
& =1+\int_{0}^{x}(1+x) d x=1+x+\frac{x^{2}}{2}
\end{aligned}
$$

The third approximate sold is.

$$
\begin{aligned}
y_{3} & =y_{0}+\int_{0}^{x} y_{2} d x \\
& =1+\int_{0}^{x}\left(1+\dot{x}+\frac{x_{1}^{2}}{2}\right) d x=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}
\end{aligned}
$$

proceeding like this webcan, find the successive approximations.

Given differential equation, is $y^{\prime}=y$
(noitsoss t hoisting

$$
\begin{aligned}
& \text { (i) } \frac{d y}{d x}=y \\
& \left(\frac{1}{x+1}+1-1\right.
\end{aligned}
$$

integrating we get,

$$
\left.\log _{e} y=x+c\right)
$$

$\therefore$ The exact sol is $y=e^{x+c}=C e^{x}$
using the initial condition $x=0, y=1$ we get $c=1$
ie) $y=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$
Hence the Successive approximative solutions are the partial sums of the exact solution.
ph find an approximate solution of the initial value problem $y^{\prime}=1+y^{2}, y(0)=0$. by picard's method and Compare with the exact solution.
Soon:-
picard's iteration formula is given by.

$$
\begin{aligned}
& \text { picard iteration pore } n=1,2 \ldots \\
& y_{n}=y_{0}+\int_{x_{0}}^{x} f\left(x, y_{n-1}\right) d x \text { where } n \text { and } y_{0}=0
\end{aligned}
$$

Here $f(x, y)=1+y^{2}, x_{0}=0$ and $y_{0}=0$
$\therefore$ The first approximation is $y_{1}=y_{0}+\int_{0}^{x} f(x, y) d x$

$$
\begin{aligned}
& =y_{0}+\int_{0}^{x}\left(1+y_{0}^{2}\right) d x \\
& =\int_{0}^{x} d x=x .
\end{aligned}
$$

The second approximation is,

$$
\begin{aligned}
& y_{2}=y_{0}+\int_{0}^{x}\left(1+y_{1}^{2}\right) d x \\
&=\int_{0}^{x}\left(1+x^{2}\right) d x=x+\frac{x^{3}}{3} \\
& \text { The third approximation is } \\
& y_{3}=y_{0}+\int_{0}^{x}\left(1+y_{2}^{2}\right) d x \\
&=\int_{0}^{x}\left[1+\left(x+\frac{x^{3}}{3}\right)^{2}\right] d x=\int_{0}^{x}\left[1+x^{2}+\frac{\left.2 x^{4}+\frac{x^{6}}{9}\right] d x}{9}\right. \\
&=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\frac{x^{7}}{63} .
\end{aligned}
$$

proceeding like this we can find the further approximate
solution.
Now, the given differential equation is $\frac{d y}{d x}=1+y^{2}$
ii) $\frac{d y}{1+y^{2}}=d x$

Integrating we get, $\tan ^{-1} y=x+c$
using the initial condition we get $c=0$
a via $y=\tan x=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{\sqrt{5}}+\frac{17 x^{7}}{315}+\cdots \ldots . . . \quad$. clearly the first three terms of $y_{3}$ are some, as that of the exact solution.
10.3 Euler's method

Taylor's series method and picard's method that we have discursed in the previous two sections yield the soon of a differential equation in the form of a power series. we now proceed to describe methods which give the soon in the form of table values at equally spaced points.

$$
\begin{align*}
& \text { spaced points. }  \tag{1}\\
& \frac{d y}{d x}=f(x, y) \text { with } y\left(x_{0}\right)=y_{0}
\end{align*}
$$

suppose we wont to solve (1) for $y$; at the points $x_{r}=x_{0}+r h, r=1,2,3 \ldots$
Integrating (1) between the limits $x_{0}$ and $x$, we get,

$$
\begin{align*}
& \text { Integrating }  \tag{2}\\
& \qquad \int_{0}^{y} d y=\int_{x_{0}}^{x_{1}} f(x, y) d x \\
& \text { Hence, } y_{1}=y_{0}+\int_{x_{0}}^{x_{1}} f(x, y) d x \\
& \text { Assuming that } 1(x, y)=f\left(x_{0}\right.
\end{align*}
$$

abisomisegrgato tacit ant.

Assuming that $f(x, y)=f\left(x_{0}, y_{0}\right)$ in $x_{0} \leq x \leq x_{1}$, we get,

$$
\begin{align*}
& y_{1}=y_{0}+\left(x_{1}-x_{0}\right) f\left(x_{0}, y_{0}\right) \\
& \therefore y_{1}=y_{0}+h f\left(x_{0}, y_{0}\right) \tag{x}
\end{align*}
$$

III ${ }^{\text {by }}$ if $x_{1} \leq x \leq x_{2}$, we have

$$
y_{2}=y_{1}+\int_{x_{1}}^{x_{2}} f(x, y) d x
$$

Substituting $f(x, y$, for $f(x, y)$ we get

$$
\left.\left.\left.y_{2}=y_{1}+h f\left(2 x_{1}, y_{1}\right)(4) x\right)+1\right)\right\}^{(4)}=
$$

proceeding like this we obtain the general formula

$$
\begin{aligned}
& \text { receding like this we } \\
& y_{n+1}=y_{n}+h\left(x_{n}, y_{n}\right) \quad \text { ross } \\
& n=0,132
\end{aligned}
$$

This is called Euler's algorithm since $x_{n} n_{0}=x_{0}+$ nh and $y_{n}=y\left(x_{n}\right)$, the above formula can be also be written as

$$
y(x+h)=y(x)+h f(x, y)
$$

Modified Euler's method
Instead of approximating $f^{\prime}(x, y)$ by $f\left(x, 0, y_{0}\right)$ in $($ we approximate it by $1 / 2[f(x, y)+f(x, y)]]$ which is the mean of the slopes of the tangents at the points corresponding to $x=x_{0}$, and $x=x^{\prime}$. Thus we obtain Scanned by CamScanner
$y_{1}^{(1)}=y_{0}+\frac{h}{2}\left[f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}\right)\right]$ which is the mean of the slopes of the tangents, at the points corresponding to $x=x_{0}$, and $x=x_{1}$. Thus we obtain.
$y_{1}$ (1) where $y_{1}$ is given by (2) $y_{1}{ }^{(1)}$ is the first modified value of $y_{1}$.

$$
\text { Let } y_{1}{ }^{(2)}=y_{0}+\frac{h}{2}\left[f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}\right)\right]
$$

we repeat this process till two conseccite values of $y$ agree. Let $y$, be the final value obtained to the desired acuracy. using this value of $y_{1}$ we compute.

$$
y_{2}=y_{1}+h f\left(x_{0}+h, y_{1}\right)
$$

Now, let $y_{2}^{(1)}=y_{1}+\frac{h}{2}\left[f\left(x_{0}+h, y_{1}\right)+f\left(x_{0}+2 h, y_{1}\right)\right]$
we repeat this process until two consecuite values agree. Then we proceed to calculate $y_{3}$, as above and continue the process till we calculate $y_{n}$.
Lb Solve $\frac{d y}{d x}=1-y, y(0)=0$ using Euler's method find is at $x=0.1$ and $x=0.2$. Compare the result with results of the exact solution.
Sold: The Eulers formula for the numerical soon of the differential equation $\frac{d y}{d x}=f(x, y)$ is

$$
\begin{equation*}
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right) \tag{1}
\end{equation*}
$$

The given differential equation is $\frac{d y}{d x}=1-y, \quad \begin{aligned} & x_{1}=0.1 \\ & x_{2}=0.2\end{aligned}$

$$
\begin{aligned}
& \quad x_{2}=0.2 \\
& h=x-x_{0}
\end{aligned}
$$

$$
\therefore f(x, y)=1-y_{1}
$$

Also we have $x_{0}=0, y_{0}=0, h=0.1$

$$
=0.1-0
$$

$$
0.1-0
$$

$$
h=0.1
$$

putting $n=0$ in (1) we get

$$
\begin{aligned}
& y(0,1)=y_{1} \\
& =y_{n}+h\left(y_{n}\right) \\
& =y_{0}+h f\left(x_{0}, y_{0}\right) \\
& =0+0.1(1)=0.1
\end{aligned}
$$

Now,
putting $n=1$ in (1) we get $y(0.2)=y_{2}$

$$
\begin{aligned}
{[(x)) } & =y_{1}+f\left(x_{1}, y_{1}\right) \\
& =0.1+(0.1)(1.0 .1) \\
& =0.19
\end{aligned}
$$

Hence $y(0.1)=0.1$ and $y(0.2)=0.19$
The exact solution of $\frac{d y}{d x}=1+y$ is not from $\frac{d y}{1-y}=d x$

$$
\therefore \log (1-y)=x+c
$$

putting $x=0$ and $y=0$ we get $c=0$

$$
\begin{aligned}
& \therefore 1-y=e^{x .} \text {. Hence } y=1-e^{x} \\
& y(0.1)=1-e^{0.1}=0.1052 \text { and } y(0.2)=1-e^{0.2} \\
&=0.2214
\end{aligned}
$$

12 using Euler's method solve $\frac{d y}{d x}=1+x y$ with $y(0)=z_{2}$ Find $y(0.1), y(0.2)$ and $y(0.3)$. Also find the values by modified Euler's method.
soln:- The Euler's formula for numerical solution of the differential equation

$$
\left\{\begin{array}{l}
\frac{d y}{d x}=f(x, y) \text { is } \\
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right) \quad n=0,1,2 \tag{1}
\end{array}\right.
$$

Here $f(x, y)=1+x y, x_{0} \neq 0, y 0=2$ and $h=0.1$
putting $n=0$ in (1) weget $y(0.1)=y_{1}$

$$
\begin{aligned}
& =y_{0}+h f\left(x_{0}, y_{0}\right) \\
& =2+(0.1) f(0.2) \\
& =2.1
\end{aligned}
$$

Now $x_{1}=x_{0}+h=0.1$.

Now,
putting $n=1$ in (1) we get $y(0.2)=y_{2}$

$$
\begin{aligned}
& =y_{1}+h f\left(x_{1}, y_{1}\right) \\
& =2.1+(0.1)[1+0.1 \times 2.1]
\end{aligned}
$$

$$
x_{2}=x_{1}+h=0.2
$$

putting $n=2$ in (1) we get $y(0.3)=y_{3}$

$$
\begin{aligned}
\forall 1=\frac{b}{b} & =y_{2}+h f\left(x_{0}, y_{2}\right) \\
& =2.1+(0.1)[1+0.1 \times 2.1] \\
& =2.221+(0.1)[1+0.2 \times 2.2221] \\
& =2.3654
\end{aligned}
$$

Hence $y(0,1)=2.1, y^{\prime}(8.20=2.2221$ and

$$
y(0.3)=2.3654
$$

Modified Euler's method $=1 \cdot 0+0=s+o x=1 x$
Starting value for $y_{i}=2.1$

$$
\begin{aligned}
y_{1}^{(1)} & =y_{0}+\frac{h}{2}\left[f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}\right)\right] \\
& =2+\frac{0.1}{2}[1+1+(0,1)(2 \cdot 1)] \\
y_{1}^{(2)} & =2 \cdot 2205
\end{aligned}
$$

$$
\begin{aligned}
& =2+\frac{0.1}{2}[1+1+(0.1)(2.2205)] \\
& =2.11111
\end{aligned}
$$

Continuing this process, we get $y_{1}^{(3)}=2.1105$,

$$
y_{1}^{(4)}=2.1105
$$

$\therefore$ Final value of $y_{1}=2.1105$
Now, starting value of

$$
\begin{aligned}
y_{2} & =y_{1}+h f\left(x_{0}+h, y_{1}\right) \\
& =2.1105+(0.1)[1+(0.1)(2.1105)] \\
& =2.2316 \\
y_{2}^{(1)} & =y_{1}+\frac{h}{2}\left[f\left(x_{0}+h, y_{1}\right)+f\left(x_{0}+2 h 1 y_{2}\right)\right] \\
& =2.1105+\frac{0.1}{2}[1+(0.1)(2.1105)+1+(0.2)(2.2316)] \\
& =2.2434
\end{aligned}
$$

Continuing this process we get, $y_{2}^{(2)}=2.2435, y_{2}^{(3)}=2.2434$ $\therefore$ Final value of $y_{2}=2.2434$ ans $\therefore$
starting value of

$$
\begin{aligned}
y_{3} & =y_{2}+h f\left(x_{0}+2 h, y_{2}\right) \\
& =2.2434+(0.1)[1+(0.2)(2.2434)] \\
& =2.2579 \\
y_{3}^{(1)} & =y_{2}+\frac{h}{2}\left[f\left(x_{0}+2 h, y_{2}\right)+f\left(x_{0}+3 h, y_{3}\right)\right] \\
& =2.2434+\frac{0.1}{2}[1+(0.2)(2.2434)+1+(0.3)(2.2579)] \\
& =2.3997
\end{aligned}
$$

Continuing this process we get $y_{3}^{(2)}=2.4018, y_{3}^{(3)}=2.4019$, $y_{3}^{(4)}=2.4019$,
$\therefore$ Final value of $y_{2}=9.9857$
starting value of $y_{3}=y_{2}+0.1[f(1.2 / 10.9857)]$
Now, (1)

$$
[(x+d 8+b)=0 \cdot 9730
$$

COS

$$
\begin{aligned}
& {[(y)=0,9730} \\
& =y_{2}+\frac{h}{2}\left[f\left(x_{0}+2 h, y_{2}\right)+f\left(x_{0}+3 \tilde{h}, y_{3}\right)\right]
\end{aligned}
$$

$$
=
$$

$\therefore$ Final value of $y_{3}=2.4019$
Hence $y_{1}=2.1105, y_{2}=2.3997$ and $y_{3}=2.4019$.
Given $\frac{d y}{d x}+\frac{y}{x}=\frac{1}{x^{2}}, y(y)=1$. Evaluate $y^{\prime}(1.3)$ by modified
Euler's method.
son:

$$
\frac{d y}{d x}=\frac{1}{x^{2}}-\frac{y}{x}=\frac{1-x y}{x^{2}}, y(1)=1
$$

$\therefore f(x, y)=\frac{1-x y}{x^{2}}, x_{0}=1, y_{0} \Rightarrow$ and we take
Starting value of $y(1.1)=y$, is given by.

$$
\begin{aligned}
& y_{1}=y_{0}+h f\left(x_{0}, y_{0}\right)=1 \\
& y_{1}^{(1)}=y_{0}+\frac{h}{2}\left[f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}\right)\right]
\end{aligned}
$$

$$
=1+\frac{0.1}{2}[0+f(1.1)]
$$

$$
=1+0.05\left[\frac{1-1.1}{(1.1)^{2}}\right]=0.9959
$$

$$
y_{1}^{(2)}=1+\frac{h}{2}\left[f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}^{(1)}\right)\right]
$$

$$
\begin{aligned}
& =1+0.05[0+1+(1.1) \times(0.9959) \\
& \left.=0.9605(2011.6)(1) 1)^{2}\right]
\end{aligned}
$$

Continuing this process, we obtain $y_{1}^{(3)}=0.9977$

$$
\begin{aligned}
& y_{1}^{(4)}=0.9960, y_{1}^{(5)}=0.9960 \\
& \therefore \text { Final value of } y_{1}=0.9960 \\
& \text { Now, }
\end{aligned}
$$

$$
\begin{aligned}
& =0.9960+0.1\left[\frac{1-(1.1)(0.9960)}{(1.1)^{2}}\right] \\
& =0.9881
\end{aligned}
$$

$$
y_{2}{ }^{(1)}=y_{1}+h / 2\left[f\left(x_{0}+h\left(y_{1}\right)+f\left(x_{0}, 2 h, y_{2}\right)\right]\right.
$$

$$
=0.9960+(0.05)[f(14)] 0.9960)+f(1.2,0.9881)]
$$

$$
=0.9856
$$

Continuing, sthis process we obtain $y_{2}{ }^{(2)}=0.9857$,

$$
y_{2}^{(3)}=0.9857
$$

$\therefore$ Final value of $y_{2}=0.9857$ Starting value of $y_{3}=y_{2}+8.11[f(1.2,0.98571)]$. Now, $=0.9730$ it patron

$$
\begin{aligned}
y_{3}^{(1)} & =y_{2}+\frac{h}{2}\left[f\left(x_{0}+2 h, y_{2}\right)+f\left(x_{0}+3 h i y_{3}\right)\right] \\
& =0.9857+0.05[f(1.2100 .9837)+f(1.3,0.9730)] \\
& =0.971
\end{aligned}
$$

$$
\text { roses, we get } y_{3}^{(2)}=0.97167
$$

Continuing, this process, we get $\left.y_{3}^{(2)}=0.9716\right]$ aol $y_{3}^{(3)}=0.9662, y_{3}^{(4)}=0.9662$
$\therefore y(1.3)=$ final value of $y_{3}=0.9662$.
10.4 Runge-kutta methods

First order R-K method
consider $\frac{d y}{d x}=f(x, y)$ with $y\left(x_{0}\right)=y_{0}$
The Euler's formula for first approximation to the solution of the above differential equation is given by.

$$
\begin{aligned}
y_{1} & =y_{0}+h f\left(x_{0}, y_{0}\right) \\
& =y_{0}+h y_{0}^{\prime} \quad\left[\because y^{\prime}=f(x, y)\right]
\end{aligned}
$$

Also $y_{1}=y\left(x_{0}+h\right)=y_{0}+\frac{h}{1!} y_{0}^{\prime}+\frac{h^{2}}{2!} y_{0}^{\prime \prime}+\cdots$
clearly the Euler's method agrees with the Taylor's series solution upto the term in h. Hence Euler's method is the Runge-kulta method of first order.
II second order R-K method
The modified Euler's formula for (1) is

$$
y_{1}=y_{0}+\frac{h}{2}\left[f\left(x_{0}, y_{0}\right)+f\left(x_{0}+h, y_{0}+h f\left(x_{0}, y_{0}\right)\right]\right.
$$

ie) $y_{1}=y_{0}+\frac{h}{2}\left[f_{0}+f\left(x_{0}+h, y_{0}+h f_{0}\right)\right]$ bant ion silt
 expanding the L.H.S by Taylor series Due get IT

$$
\begin{equation*}
y_{1}=y\left(x_{0}+h\right)=y_{0}+\frac{h}{h} y_{0}^{\prime}+\frac{h^{2}}{2!} y_{0}+\frac{h_{3}}{3!} y_{0}^{\prime \prime}+\cdots \tag{uh}
\end{equation*}
$$

expanding $f\left(x_{0}+h, y_{0}+h f_{0}\right)$ by Taylor's series for a function of two variables we have moons. toluoloo

$$
\left.f\left(x_{0}+h, \left.\frac{\left.y_{0}+h f_{0}\right)}{\text { using } t \text { is in }}=f\left(x_{0, y} y_{0}\right)+h \frac{(\partial)_{0}}{1!}\left[\frac{\partial f}{\partial x}\right)^{2}+x_{0} \right\rvert\, y_{0}\right)+f_{0}\left(\frac{\partial f}{\partial y}\right)_{\left(x_{0}, y_{0}\right)}\right]+o(h)
$$ using this in (2) we gel

$$
\begin{aligned}
& \left.y_{1}=y_{0}+\frac{h}{2}\left[f_{0}+f\left(x_{0}-\frac{1}{y_{0}}\right)+h\left(\frac{\partial f}{\partial x}\right)_{\left(x_{0} \mid y_{0}\right)}+h f_{0}\left(\frac{\partial f}{\partial y}\right)_{\left(x_{0}, y_{0}\right)}+b\left(h^{2}\right)\right\}\right] \\
& (\varepsilon x+o v i n t+a x) \text { ? } \\
& =y_{0}+\frac{1}{2}\left[h f_{0}+h\left(f_{0}+h_{1} h_{\varepsilon}^{2}\left\{\left(\frac{\partial f}{\partial x^{s}}\right)\left(\frac{\rho}{x}+1, y_{0}\right) \partial\right)^{\prime}\left(\frac{\partial f}{\partial y}\right)_{\left(x_{0}, y_{0}\right)}\right\}+o\left(h^{3}\right)\right] \\
& \begin{array}{l}
\text { d rovip } y_{0}+h f_{0}+h^{2} f_{0}^{\prime}+o\left(h^{3}\right)
\end{array} \\
& =y_{0}+h f_{0}+\frac{h^{2}}{2!} f_{0}^{\prime}+0\left(h^{3}\right) \\
& V^{\prime} \Delta+0 y=18
\end{aligned}
$$

 comparing (3) and (4) we find that ed that modified Euler method agrees with the tragloriso series solution unto- the $h^{2}$ term. "-N sestitadas nay brit of lozenge II
Hence the modified Euler's method, is the Runge-kutta method of seconds order. as nortorscg an
$\therefore$ The Second order Runga-kutta former

$$
y_{1}=y_{0}+\frac{1}{2}\left(k_{1}+k_{2}\right)
$$

where $k_{1}=h f\left(x_{0}, y_{0}\right)$ and $k_{2}=h f\left(x_{0}+h, y_{0}+k_{i}\right)$
The third order Ringa-kutta formula is give by

$$
y_{1}=y_{0}+\frac{1}{6}\left(k_{1}+4 k_{2}+k_{3}\right)
$$

Where $k_{1}=h f\left(x_{0}, y_{0}\right)$

$$
\begin{aligned}
& k_{2}=h f\left(x_{0}+h\right. \\
& k_{3}=h f\left(x_{0}+h, y_{0}+k_{1}\right)
\end{aligned}
$$


Fourth order R-K method:
This method is most commonly used and is referred as the Runge-kutta method

The working rule for solving the initial value problem.

$$
\frac{d y}{d x}=f(x, y) \quad \frac{1 y(x, y)=y_{0}}{18}
$$

by $4^{\text {th }}$ order Runge-Kutta method is follows: co Calculate successively.

$$
\begin{aligned}
k_{1} & =h f\left(x_{0}, y_{0}\right) \\
k_{2} & =h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}\right) \\
k_{3} & =h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}\right) \\
k_{4} & =h f\left(x_{0}+h, y_{0}+k_{3}\right) \\
\text { and } \Delta y & =1 / 6\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
\end{aligned}
$$

Then the required approximate value is given by

$$
y_{1}=y_{0}+\Delta^{\prime} y
$$

"11 1 lh e value of $y$ in the second interval is obtained by replacing $x_{0}$ by $x_{1}$, and $y_{0}$ by $y_{1}$ in the above set of formulae and we obtain $y_{2}$.

In general to find $y_{n}$ substitute $x_{n-1}, y_{n-1}$ is the expression for $k_{1}, k_{2}$ etc.
Note:- (1) The operation is identical whether the differential
equation is linear (or) non-linear.
Noke:-(2)
To evaluate $y_{n+1}$ we need information only at the point $y_{n}$. Information at the points $y_{n-1}, y_{n-2}$ etc. are not directly required. Hence $R \cdot k$ methods are step methods.
ph Compute $y(0.1)$ and $y(0.2)$ by Runge-kutta method by $4^{\text {th }}$ order for differential equation.

$$
\frac{d y}{d x}=x y+y^{2}, \quad y(0)=1
$$

Soln:- The formula for the fourth order Ringe-kutta method are

$$
\begin{aligned}
k_{1} & =h f\left(x_{0}, y_{0}\right) \\
k_{2} & =h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}\right) \\
k_{3} & =h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}\right) \\
k_{4} & =h f\left(x_{0}+h, y_{0}+k_{3}\right) \\
\text { and } \Delta y & =1 / 6\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
\end{aligned}
$$

where $h$ is the interval of differentiating and $\left(x_{0}, y_{0}\right)$ is the initial value. Here $f(x, y)=x y+y^{2}, x_{0}=0, y_{0}=1$ and $h=0.1$
Now, $k_{1}=(0.1)(0+1)=0.1$

$$
\begin{aligned}
& k_{2}=(0.1)\left[0.05(1.0 .5)+(1.05)^{2}\right]=0.1155 \\
& k_{3}=(0.1)\left[0.05(1.05775)+(1.0 .5775)^{2}\right]=0.1172 \\
& k_{4}=(0.1)\left[(0.1)(1.172)+(1.1172)^{2}\right]= \\
& k_{4}=0.1360 \\
& \dot{A}\left(0 火 \Delta \dot{y}=\frac{p}{6}[0.1+0.2310+0.2344+0.1360] \div \frac{1}{6}(0.7014)\right. \\
& \Delta y=0.1169 \\
& \therefore y(0.1)=1.1169 \\
& y_{1}=1.1169\left(\frac{1}{x+}\right)(1,0)=0.1
\end{aligned}
$$

For the second approximation. we have $x_{1}=0.1$

$$
\begin{aligned}
& \text { the second approximation, we have } \\
& k_{1}=h f\left(x_{1}, y_{1}\right)=0.1\left[0.1 \times(1.1169)+(1.116)^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
k_{2} & =h f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{k_{1}}{2}\right) \\
& =(0.1)\left[0.15(1.1849)+(1.1849)^{2}\right] \\
k_{2} & =0.1582 \\
k_{3} & =h f\left(x_{1}+\frac{h}{2}, \frac{k_{1}}{2}+y_{1}\right) \\
& =(0.1)\left[0.15(1.196)+(1.196)^{2}\right] \\
k_{3} & =0.1610 \\
k_{4} & =h f\left(x_{1}+h, y_{1}+k_{3}\right)=(0.1)[0.2(1.2779)+(1.2 \pi 99)] \\
k_{4} & =0.1889 \\
\Delta y & =\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\
& =\frac{1}{6}(0.1359+0.3164+0.3220+0.1889)^{\prime} \\
4 y & =0.1605 \\
y_{2} & =y_{1}+\Delta y=1.1169+0.16050=1.2774 \\
\Delta y(0.2) & =1.277411
\end{aligned}
$$

Pb Use Runge-kulta method of the fourth order to find $y(0.1)$ given that $\frac{d y}{d x}=\frac{1}{x+y}, y(0)=1$
Soln:-
The formula for the fourth order Runge-kutta method is given by

$$
\begin{aligned}
& k_{1}=h f\left(x_{0}, y_{0}\right) \\
& =k_{2}=h f\left(x_{0}+h / 2, y_{0}+\frac{k_{1}}{2}\right) \\
& k_{3}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}\right) \\
& \left.k_{4}=h f\left(x_{0}+h, y_{0}+k_{3}\right)-1\right] \\
& \Delta y=1 / 6\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
\end{aligned}
$$

Where in the interval of is diffencing and $\left(x_{0}, y_{0}\right)$ is the initial value.
Here $f(x, y)=\frac{1}{x+y}, x_{0}=0, y_{0}=1$ and $h=0.1 \Delta$
Now. 1

$$
\begin{aligned}
& k_{1}=(0.1)\left(\frac{1}{0+1}\right)=0.1 \quad k_{1}=f f_{1}\left(x_{0}, y_{0}\right) \\
& k_{2}\left[=(0.1)+\left[\left(p \frac{1.1}{\left(x_{0}+\frac{h}{2}\right)+\left(y_{0}+\frac{k_{1}}{2}\right)}\right]\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{0.1}{0.5+1.05}=(0.1)\left[\frac{1}{1.1}\right]=0.0909 \\
& k_{3}=(0.1)\left[\frac{1}{\left(x_{0}+\frac{h}{2}\right)+\left(y_{0}+\frac{k_{2}}{2}\right)}\right]=(0.1) f\left(0+\frac{\left.0.1,1+\frac{0.1}{2}\right)}{}=\frac{0.1}{0.05+1.045}=0.0913=\left(\frac{k_{2}}{2}=1\right) f(0.05,1.05)\right. \\
&\left.=(0.1)\left(\frac{1}{0.05+1.05}\right)\right) \\
& k_{4}=(0.1)\left[\frac{1}{\left(x_{0}+h\right)+\left(y_{0}+k_{3}\right)}\right]=0.0909 \\
&=\frac{(0.1)}{0.1+0.0913}=0.0839 \\
& \therefore \Delta y=\frac{1}{6}[0.1+2(0.8909)+2(0.0913)+0.0839] . \\
&=0.0914 \\
& \therefore y=y_{0}+\Delta y=1+0.0914=1.0914 \\
& \therefore y(0.1)=1.0914
\end{aligned}
$$

13 given $y^{\prime}=x^{2}-y, y(0)=1$ find $y=(0.1)$ using Rungz kutta fourth order. $\quad y\left(x_{0}\right)=y_{0}$
proof:-

$$
x_{0}=0, y_{0}=1
$$

The formula for the fourth order Runge-kutta method is given by

$$
\begin{aligned}
& k_{1}=h f\left(x_{0}, y_{0}\right) \\
& k_{2}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}\right) \\
& k_{3}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}\right) \\
& k_{4}=h f\left(x_{0}+h, y_{0}+k_{3}\right) \text { and } \\
& \Delta y=1 / 6\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
\end{aligned}
$$

where $h$ is the interval of differencing and $\left(x_{0}, y_{0}\right)$ is the initial value.
Here $f(x, y)=x^{2}-y, x_{0}=0, \dot{y}_{0}=1, h=0.1$

$$
\begin{aligned}
\therefore k_{1} & =(0.1)(-1)=-0.1 \\
k_{2} & =(0.1)\left[\left(\frac{(0.1)^{2}}{2}-\left(1+\frac{(0.1)}{21}\right)\right]=\right. \\
& =0.1[0.0025-0.95]=0 \\
k_{3} & =(0.1)\left[\frac{(0.1)^{2}}{2}-(1+(-0.0948))\right]
\end{aligned}
$$

Scanned by CamScanner

$$
\begin{aligned}
& =-0.095 \\
k_{4} & =(0.1)\left[(0.1)^{2}-(1-0.095)\right] \\
& =-0.0895 \\
\therefore \Delta y & =\frac{1}{6}[-0.1-0.1896-0.190-0.0895] \\
& =-0.09485 \\
\therefore y(0.1) & =y_{0}+\Delta y=1-0.09485 \\
& =0.9052
\end{aligned}
$$

Pb Using Runge-kutta method of fourth order for $y(0.1), y(0.2)$ and $y(0.3)$ given that $\frac{d y}{d x}=1+x y, y(0)=2$
Son:- The

The formula for the $4^{\text {th }}$ order Runge-kutta method of the differential equation $\frac{d y}{d x}=f(x, y)$ are

$$
\begin{aligned}
& k_{1}=h f\left(x_{0}, y_{0}\right) \\
& k_{2}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}\right) \\
& k_{3}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}\right) \\
& k_{4}=h f\left(x_{0}+h, y_{0}+k_{3}\right) \\
& \Delta y=\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
\end{aligned}
$$

where $h$ is the interval of differencing and, $\left(x_{0}, y_{0}\right)$ is the initial value

Here $f(x, y)=1+x y, x_{0}=0, y_{0}=2$ and $h=0.1$

$$
\begin{aligned}
\therefore k_{1} & =(0.1)(1+0)=0.1 \\
k_{2} & =(0.1)\left[1+\left(0+\frac{(0.1)}{2}\right)\left(2+\frac{0.1}{2}\right)\right] \\
& =0.1[1+0.1025] \\
& =0.11025 \\
k_{3} & =0.1\left[1+\left(0+\frac{0.1}{2}\right)\left(2+\frac{0.11025)}{2}\right]\right. \\
& =0.1103 \\
k_{4} & =60.1)\left[1+\left(0+\frac{0.1}{2}\right)(2+0.1103)\right] \\
& =0.1106 \\
\Delta y^{8} & =\frac{1}{6}[0.1+2(0.11025)+2(0.1103)+0.1106] \\
& =0 .[086
\end{aligned}
$$

$$
\begin{aligned}
\therefore y_{1} & =y_{0}+4 y \\
& =2.1086 \\
\therefore y(0.1) & =2.1086
\end{aligned}
$$

For the second approximation we have.

$$
\begin{aligned}
& k_{1}=h f\left(x_{1}, y_{1}\right) x_{1}=0.1, y_{1}=2.1086 \\
&=(0.1)[1+(0.1)(2.1086)]=0,1211 \\
& k_{2}=h f\left(x_{1}+\frac{h}{2}, y_{1}+\frac{k_{1}}{2}\right) \\
&=(0.1)\left[1+\left(0.1+\frac{0.1}{2}\right)\left(2.1086+\frac{0.1211}{6}\right)\right] \\
&=0.1325 \\
& k_{3}=h f\left[x_{1}+\frac{h}{2}, y_{1}+\frac{k_{2}}{2}\right] \\
& k_{4}=h f\left(x_{1}+h, y_{1}+k_{3}\right) \\
&=(0.1)[1+(0.1+0.1)(2.1086+0.1326)] \\
&=0.1464 \\
& \Delta y=\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\
&=\frac{1}{6}(0.1211+2(0.1325)+2(0.1326)+0.1464] \\
&=0.1330 \\
& \therefore y_{2}=y_{1}+\Delta y=2.2416 \\
& \hline 10.1326
\end{aligned}
$$

for the third approximation we have

$$
\begin{aligned}
k_{1} & =h f\left(x_{2}, y_{2}\right) \\
& =(0.1)[1+(0.2)(2.2416)]=0.1448 \\
k_{2} & =h f\left(x_{2}+\frac{h}{2}, y_{2}+\frac{k_{1}}{2}\right) \\
& =(0.1)\left[1+(0.2)+\left(\frac{0.1)}{2}\right)\right]\left[2.2416+\frac{0.1448}{2}\right] . \\
k_{2} & =0.1579
\end{aligned}
$$

$$
k_{3}=h f\left[x_{2}+\frac{h}{2}, y_{2}+\frac{k_{2}}{2}\right]
$$

$$
=(0.1)\left[1+\left(0.2+\frac{0.1}{2}\right)\left(2.2416+\frac{0.15+9}{2}\right)\right.
$$

$$
=0.158
$$

$$
\begin{aligned}
k_{4} & =h f /\left(x_{2}+h, y_{2}+k_{3}\right) \\
& =(p .1)[1+(0.2+0.1)(2.2416+0.158)] \\
& =0.158 \\
\Delta_{5} & =1 / 6( \\
k_{4} & =h f\left(x_{2}+h \quad y_{2}+k_{3}\right) \\
& =(0.1)[1+(0.2+0.1)(2.2416+0.158)] \\
& =0.172 \\
\Delta y & =1 / 6\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\
& =\frac{1}{6}(0.1448+2(0.1579)+2(0.158)+0.172] \\
& =0.158) \\
\therefore y_{3} & =y_{2}+\Delta y=2.3997
\end{aligned}
$$

Hence we have $y(0.1)=2.1086, y(0.2)=2.2416$ and

$$
y(0.3)=2.3397
$$

Qb using $4^{\text {th }}$ order. Runge-kutta method, evaluate the value of $y$. when $x=1.1$ given that

$$
\frac{d y}{d x}+\frac{y}{x}=\frac{1}{x^{2}}, y(1)=1
$$

Sol:-
The formula for the $4^{\text {th }}$ order Runge-kutta method of the differential equation

$$
\begin{aligned}
& \frac{d y}{d x}=f(x, y) \text { is given by } \\
& k_{1}=h f\left(x_{0}, y_{0}\right) \\
& k_{2}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{1}}{2}\right) \\
& k_{3}=h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{2}}{2}\right) \\
& k_{4}=h f\left(x_{0}+h \quad\left(y_{0}+k_{3}\right)\right. \\
& 4 y=1 / 6\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\
& 8 p+1,
\end{aligned}
$$

where $h$ is the interval of differencing and $\left(x_{0}, y_{0}\right)$ is the initial value.
Here $f(x, y)=1 / x^{2}-\frac{y}{x}, x_{0}+1$ and $y_{0}=1, h=0.1$
Now, $\left.\left(k_{1}=(0.1)\left(\frac{1}{1^{2}}-\frac{1}{T}\right)=\theta+0.0\right)+i\right](1.0)=$

$$
K_{2}=(0.1)\left(\frac{1}{\left(x_{0}+n / 2\right)^{2}}-\frac{y_{0}+k_{1 / 2}}{x_{0}+h / 2}\right)
$$

$$
\begin{aligned}
& =(0.1)\left(\frac{1}{\left(1+\frac{0.1}{2}\right)^{2}}-\frac{1+0}{1+\frac{0.1}{2}}\right) \\
& =(0.1)(0.9070-0.9524) \\
& =-0.00454 \\
k_{3} & =(0.1)\left(0.9070-\frac{1+\left(\frac{-0.00454}{2}\right)}{1.05}\right) \\
& =(0.1)(0.9070-0.9502) \\
& =-0.00432 \\
k_{4} & =(0.1)\left(\frac{1}{(1.1)^{2}}-\frac{1-0.00432}{1.1}\right) \\
& =(0.1)(0.8264-0.9052) \\
& =-0.00788 \\
\therefore \Delta y & =1 / 6(0-0.00908-0.00864-0.00788) \\
& =-0.0042667 \\
y_{1} & =y(1.1)=y_{0}+4 y=1+(-0.0042667) \\
\therefore y & =0.9957 \\
& \text { unit-5}
\end{aligned}
$$

10.5 predictor correct methods:-
consider the equation $\frac{d y}{d x}=f(x, y)$ with $y\left(x_{0}\right)=y_{0}$. we divide the range for $x$ into a number of skep sizes of equal witt with $h$. If $x_{i}$ and $x_{i+1}$ are two consecutive points then $x_{i+1}=x_{i}+h$..

Euler's formula for the above differential equation is

$$
\begin{equation*}
y_{i+1}=y_{i}+h f\left(x_{i}, y_{i}\right) \quad i=1,2,3 \ldots \tag{1}
\end{equation*}
$$

The modified Euler's formula is,

$$
\begin{equation*}
y_{i+1}=y_{i}+\frac{h}{2}\left[f\left(x_{i}, y_{i}\right)+f\left(x_{i+1}, y_{i+1}\right)\right] \quad i=1,2 \ldots \tag{2}
\end{equation*}
$$

Equation (1) is called the predictor and (2) is called Corrector.
A predictor formula is used to predict the value $y_{i+1}$ of $y_{i+1}$ of $y$ at $x_{i+1}$ and then corrector formula is used to improve the value of $y_{i+1}$
10.6 Milne's method

Consider the first order differential equation $\frac{d y}{d x}=f(x, y)$ with $y\left(x_{0}\right)=y_{0}$
Newton's forward difference formula canbe written as

$$
\begin{equation*}
f(x, y)=f_{0}+n \Delta f_{0}+\frac{n(n-1)}{2!} \Delta^{2} f_{0}+\frac{n(n-1)(n-2)}{3!} \Delta^{3} f_{0}+\cdots \tag{1}
\end{equation*}
$$

Substituting this in the relation

$$
y_{4}=y_{0} \int_{x_{0}}^{x_{0}+4 h} f(x, y) d x
$$

we get

$$
y_{4}=y_{0}+\int_{0}^{2}+4 h \quad\left[f_{0}+n \Delta f_{0}+\frac{n(n-1)}{2!} \Delta^{2} f_{0}+\cdots\right] d x
$$

put $x=x_{0}+n h^{2, \text { Pen Hence }} d x=h d n$
when $x=x_{0}, n=0$ and when $x=x_{0}+4 h, n=4$

$$
\begin{aligned}
\therefore y_{4} & \left.=y_{0}+h\right]_{0}^{4}\left[f_{0}+n \Delta f_{0}+\frac{(n(n-1)}{n f_{0}^{\prime}+\frac{h^{2}}{2} \Delta f_{0}} \frac{1}{21} f_{0}+\cdots\right] \\
& =y_{0}+h\left[4 f_{0}+8 \Delta f_{0}+\frac{20}{3} \Delta^{2} f_{0}+\frac{8}{3} \Delta^{3} f_{0}+\cdots\right]^{2} \\
& =y_{0}+h\left[4 y_{0}^{\prime}+8(E-1) y_{0}^{\prime}+\frac{20}{3}\left(E^{2}-2 E-1\right) y_{0}^{\prime}+\right. \\
& \text { (neglacting }
\end{aligned}
$$

(neglacting, fourth and higher order difference)

$$
\left.\begin{array}{rl}
9 & =y_{0}+h\left[4 y_{0}^{\prime}+8\left(y_{1}^{\prime}-y_{0}^{\prime}\right)+\frac{20}{3}\left(y_{2}^{\prime}-2 y_{1}^{\prime}+y_{0}^{\prime}\right)+\right. \\
& =y_{0}+h\left[\frac{8}{3} y_{1}^{\prime}-\frac{4}{3} y_{2}^{\prime}+\frac{8}{3} y_{3}^{\prime}\right]^{2} \text { anion } \\
& =y_{0}+\frac{4 h}{3}\left[2 y_{1}^{\prime}-y_{2}^{\prime} y_{2}^{\prime}+2 y_{3}^{\prime}\right]
\end{array}\right\}
$$

$$
y_{4}=y_{0}+\frac{4 h}{3}\left[2 y_{1}^{\prime}-y_{1}^{\prime}+2 y_{3}^{\prime}\right]
$$

Since $x_{0} x_{1}, x_{4}$ are any five consecutive values of $x$ the above equations can be written as

$$
y_{n+1} p=y_{n \rightarrow 3}+\frac{4 n}{3}\left[y_{n-2}-y_{n-1}^{101}+2 y_{n}^{1}\right]
$$

This is called Milne'sovpredictor formula.
(the subscript $p$ indicates that it is a predicate:
value)
This formula can be used to predicate the value of $y_{4}$ when those of $y_{0}, y_{1}, y_{2}, y_{3}$ are known.

To get a corrector formula we substitute Newton's formula (1) in the relation.

$$
y_{2}=y_{0}+\int_{x_{0}}^{x_{0}+2 h} f(x, y) d x
$$

and we get,

$$
\begin{aligned}
y_{2} & =y_{0}+\int_{x_{0}}^{x_{0}+2 h}\left[f_{0}+n \Delta f_{0}+\frac{n(n-1)}{2!} \Delta^{2} f_{0}+\cdots\right] d x \\
& =y_{0}+h \int_{0}^{2}\left[f_{0}+h \Delta f_{0}+\frac{n(n-1)}{2!} \Delta^{2} f_{0}+\cdots\right]
\end{aligned}
$$

putting $x=x_{0}+n h$

$$
\begin{aligned}
& =y_{0}+h\left[2 f_{0}+2 \Delta f_{0}+1 / 3 \Delta^{2} f_{0}\right] \\
& =y_{0}+h\left[2 y_{0}^{\prime}+2(E-1) y_{0}^{\prime}+\frac{1}{3}\left(E^{2}-2 E+1 y_{0}^{\prime}\right)\right]
\end{aligned}
$$

neglacting higher order differences.

$$
=y_{0}+h\left[2 y_{0}^{\prime}+2\left(y_{1}^{\prime}-y_{0}^{\prime}\right)+\frac{1}{3}\left(y_{2}^{\prime}-2 y_{1}^{\prime}+y_{0}^{\prime}\right)\right]
$$

Thus,

$$
y_{2}=y_{0}+\frac{h}{3}\left[y_{0}^{\prime}+4 y_{1}^{\prime}+y_{2}^{\prime}\right]
$$

Since $x_{0}, x_{1}, x_{2}$ are any five consecutive values of $x$ the above equations can be written as,

$$
y_{n+1, p}=y_{n-3}+\frac{4 h}{3}\left[y_{n-2}^{\prime}-y_{n-1}^{\prime}+2 y_{n}^{\prime}\right]
$$

This is called Milne's predictor formula.
(The subscript $p$ indicates that it is a predicated value) This formula can be used to predicate the value of $y_{4}$ when those of $y_{0}, y_{1}, y_{2}, y_{3}$ are known.

To get a corrector formula we substitude Newton's formula (1) in the relation.

$$
y_{2}=y_{0}+\int_{x_{0}}^{x_{0}+2 h} f(x, y) d x
$$

and we get,

$$
g_{2}=y_{0}+\int_{x_{0}}^{x_{0}+2 h}\left[f_{0}+n \Delta f_{0}+\frac{n(n-1)}{2!} \Delta^{2} f_{0}+\cdots\right] d x
$$

$$
\begin{aligned}
& \left.=y_{0}+h \int_{0}^{2}\left[f_{0}+n \Delta f_{0}+\frac{n(n-1)}{2!} \Delta^{2} f_{0}+\cdots\right] \text { (putting } r=r_{0}+h h\right) \\
& =y_{0}+h\left[2 f_{0}+2 \Delta f_{0}+1 / 3 \Delta^{2} f_{0}+\right] \\
& \left.=y_{0}+h\left[2 y_{0}^{\prime}+2(E-1) y_{0}^{\prime}+1 / 3\left(E^{2}-2 E+1\right)\right]+y_{0}^{\prime}\right]
\end{aligned}
$$

neglacting higer order differences.

$$
=y_{0}+h\left[2 y_{0}^{\prime}+2\left(y_{1}^{\prime}-y_{0}^{\prime}\right)+\frac{1}{3}\left(y_{2}^{\prime}-2 y_{1}^{\prime}+y_{0}^{\prime}\right)\right]
$$

Thus

$$
y_{2}=y_{0}+\frac{h}{3}\left[y_{0}^{\prime}+4 y_{1}^{\prime}+y_{2}^{\prime}\right]
$$

Since $x_{0}, x_{1}, x_{2}$ are any three consecutive values of $x$ of the above relation can be written as

$$
\begin{equation*}
y_{n+1}, c=y_{n-1}+\frac{n}{3}\left[y_{n-1}^{\prime}+4 y_{n}^{\prime}+y_{n+1}^{\prime}\right] \tag{3}
\end{equation*}
$$

This is known as milne's corrector formula where the suffix cStands for corrector.

An improved value of $y_{n+1}^{\prime}$ is computed and again the corrector formula is applied until we get $y_{n+1}$ to the desired accuracy.
10.7 Adams - Bash forth method

Consider $\frac{d y}{d x}=f(x, y)$ with $f\left(x_{0}\right)=y_{0} \cdot$ Newton's backward interpolation formula can be written as

$$
f(x, y)=f_{0}+n \nabla f_{0}+\frac{n(n+1)}{2} \nabla^{2} f_{0}+\frac{n(n+1)(n+2)}{6} \nabla^{3} f_{0}+\cdots
$$

substituting this,

$$
\begin{align*}
y_{1} & =y_{0}+\int_{x_{0}}^{x_{0}+h} f(x, y) d x \text { we get -1 }  \tag{1}\\
y_{1} & =y_{0}+\int_{x_{0}}^{x_{1}}\left(f_{0}+n \nabla f_{0}+\frac{n(n+1)}{2!} \nabla^{2} f_{0}+\cdots\right) d x \\
& =y_{0}+h \int_{0}^{1}\left(f_{0}+n \nabla f_{0}+\frac{n(n+1)}{2} \nabla^{2} f_{0}+\cdots\right) d h \\
& \quad\left(\text { putting } x=x_{0}+h h\right) \\
& =y_{0}+h\left(f_{0}+\frac{1}{2} \nabla f_{0}+\frac{S}{12} \nabla^{2} f_{0}+\frac{3}{8} \nabla^{3} f_{0}+\cdots\right)
\end{align*}
$$

Neglecting fourth and higher order differences and
expressing $\nabla f_{0}, \nabla^{2} f_{0}, \nabla^{3} f_{0}$ in terms of function values we get,

$$
y_{1}=y_{0}+\frac{h}{24}\left[55 y_{0}^{\prime}-59 y_{-1}^{\prime}+37 y_{-2}^{\prime}-9 y_{-3}^{\prime}\right]
$$

This can also be written as

$$
\begin{aligned}
& \text { This can also be written as } \\
& y_{n+1}, p=y_{n}+\frac{h}{24}\left[55 y_{n}^{\prime}-59 y_{n-1}^{\prime}+37 y_{n-2}^{\prime}-9 y_{n-3}^{\prime}\right]
\end{aligned}
$$

This is called. Adams-Bashforth predictor formula A corrector formula can be derived in a similar manner by using Newton's backward difference formula at $f_{1}$.
(i) $f(x, y)=f_{1}+n \nabla f_{1}+\frac{n(n+1)}{2!} \nabla^{2} f_{1}+\frac{n(n+1)(n+2)}{3!} \nabla^{3} f_{1}+\cdots$

Substituting this in (1) we get,

$$
\begin{equation*}
y_{4}, p=y_{0}+\frac{4 h}{3}\left[2 y_{1}^{\prime}-y_{2}^{\prime}+2 y_{3}^{\prime}\right] \tag{2}
\end{equation*}
$$

Solve $\frac{d y}{d x}=\frac{1}{x+y}$ y $(0)=2, y(0.2)=2.09 ; y_{1}(0.42=2.17, y(0)=2.24$
we, are $y_{0}=2, y_{1}=2.09, y_{2}=2.17, y_{3}=2.24$
sown, aredxgiven that, $y_{0}=2, y_{1}=2.09, y_{2}=2.10$ wig
and $h=0.2$ Milne'smethod
The given differential equation is,

$$
\begin{equation*}
y^{\prime}=\frac{1}{x+y} \tag{3}
\end{equation*}
$$

from the above equation we calculate $y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}$

$$
\begin{aligned}
& y_{1}^{\prime}=\left(\frac{1}{x+y}\right)_{\left(x_{1}, y_{1}\right)}=\frac{1}{0.2+2.09}=0.4367 \\
& y_{2}^{\prime}=\left(\frac{1}{x+y}\right)_{\left(x_{2}, y_{2}\right)}=\frac{1}{0.4+2.17}=0.3891 \\
& y_{3}^{\prime}=\left(\frac{1}{x+y}\right)\left(x_{3}, y_{3}\right)=\frac{1}{0.6+2.24}=0.3521
\end{aligned}
$$

Substituting there values in (2) we get,

$$
\begin{aligned}
& y_{4, p}=2+\frac{4 \times 0.2}{3}(2 \times 0.4367-0.3891+2 \times 0.3521) \\
& y_{4, p}=2.3169 \text { (correct to } 4 \text { decimal places) }
\end{aligned}
$$

Milne's correct formula is,

$$
\begin{equation*}
\text { Milne's correct } y_{n+1}, c=y_{n-1}+\frac{h}{3}\left(y_{n-1}^{\prime}+4 y_{n}^{\prime}+y_{n+1}^{\prime}\right)- \tag{5}
\end{equation*}
$$

putting $n=3$ is (5) we get,

$$
\begin{equation*}
y_{4}, c=y_{2}+\frac{h}{3}\left(y_{2}^{\prime}+4 y_{3}^{\prime}+y_{4}^{\prime}\right) \tag{6}
\end{equation*}
$$

Now ' $y_{4}^{\prime}=\left(\frac{1}{x+y}\right)_{\left(x_{4}, y_{4}\right)}=\frac{1}{0.8+2.3169}$ cusing
$\therefore$ (6) becomes, $y_{4, c}=2.17+\frac{0.2}{3}(0.3891+4 \times 0.3521+0.3208)$
$=2.3112$ (correct to 4 decimal places)
Hence $y(0.8)=2.3112$.
P6 using Milne's predictor corrector method find $y(0.4)$ d
$0 \%$ for the differential equation $\frac{d y}{d x}=1+x y, y(0)=2$.
si So ln:-
Milne's predictor formula is.

$$
\begin{equation*}
y_{41 p}=y_{0}+\frac{4 h}{3}\left[2 y_{1}^{\prime}-y_{2}^{\prime}+2 y_{3}^{\prime}\right] \tag{1}
\end{equation*}
$$

$$
y\left(x_{0}\right)=40
$$

$$
y_{0}=2
$$

Here $x_{0}=0, y_{0}=2, h=0.1$
By Taylor's series method we have

$$
\begin{aligned}
& x_{1}=0.1, y_{1}=2.1103(y(0.1) \\
& x_{2}=0.2, y_{2}=2.2430 y(0.2) \quad h=0.1 \\
& \left.x_{3}=0.3, y_{3}=2.4011 y(0.3) \text { Refer problem } 1 \text { in } 10.1\right)
\end{aligned}
$$

$$
\begin{aligned}
& (1+x y) \\
& y_{1}^{\prime}=\left(y^{\prime}\right)\left(x_{1}, y_{1}\right)=1+(0.1)(2.1103)=1.21103 \\
& y_{2}^{\prime}=\left(y^{\prime}\right)\left(x_{2}, y_{2}\right)=1+(0.2)(2.243)=1.4486 \\
& y_{3}^{\prime}=\left(y^{\prime}\right)\left(x_{3}, y_{3}\right)=1+(0.3)+(2.4011)=1.72033
\end{aligned}
$$

Now :
putting there values in (1) we get,

$$
\begin{aligned}
y_{4, p} & =2+\frac{4(0.1)}{3}[2(1.21103)-1 \cdot 4486+2(1.72033)] \\
& =2.5885
\end{aligned}
$$

Milne's correct formula is,

$$
\begin{equation*}
y_{4, c}=y_{2}+\frac{h}{3}\left(y_{2}^{\prime}+4 y_{3}^{\prime}+y_{4}^{\prime}\right) \tag{2}
\end{equation*}
$$

Now'

$$
\begin{aligned}
w_{1}^{\prime} & (1+x y) \\
y_{4}^{\prime}=\left(y^{\prime}\right)\left(x_{4}, y_{4}\right) & =1+(0.4)(2.5885) \\
& =2.0354
\end{aligned}
$$

$\therefore$ (2) becomes, $\dot{y}_{4, c}=2.243+\frac{0.1}{3}(1.4486+4(1.72033)+$
Hence,

$$
y(0.4)=2.5885
$$

$$
=2.5885
$$

$p$ Given $\frac{d y}{d x}=\frac{1}{2}\left(1+x^{2}\right) y^{2}$ and $y(0)=1, y(0.1)=1.06,6$ $y(0.2)=1.12, y(0.3)=1.21$, Evaluate $y(0.4)$ by Milne's predictor corrector method.
proof:- Milne's predictor formula is

$$
y_{n+1}, p=y_{n-3}+\frac{4 h}{3}\left[2 y_{n-2}^{\prime}-y_{n-1}^{\prime}+2 y_{n}^{\prime}\right]
$$

putting $n=3$ we get,

$$
\begin{equation*}
y_{4, p}=y_{0}+\frac{4 h}{3}\left(2 y_{1}^{\prime}-y_{2}^{\prime}+2 y_{3}^{\prime}\right) \tag{1}
\end{equation*}
$$

Here $x_{0}=0, y_{0}=1, x_{1}=0.1, y_{1}=1.06$

$$
x_{2}=0.2, y_{2}=1.12, x_{3}=0.3, y_{3}=1.21
$$

$$
\begin{aligned}
\text { Now, } \\
\begin{aligned}
y_{1}^{\prime}=\left(y^{\prime}\right)\left(x_{1}, y_{1}\right) & =\frac{1}{2}\left(1+x_{1}^{2}\right) y_{1}^{2} \\
& =\frac{1}{2}\left(1+(0.1)^{2}\right)(1.06)^{2}=0.5674 \\
y_{2}^{\prime}=\left(y^{\prime}\right)\left(x_{2}, y_{2}\right) & =\frac{1}{2}\left(1+x_{2}^{2}\right) y_{2}^{2} \\
& =1 / 2\left(1+(0.2)^{2}\right)(1.12)^{2}=0.6523 \\
y_{3}^{\prime}=\left(y^{\prime}\right)\left(x_{3}, y_{3}\right) & =1 / 2\left(1+x_{3}^{2}\right) y_{3}^{2} \\
& =\frac{1}{2}\left(1+0.3^{2}\right)(1.21)^{2} \\
& =0.7979
\end{aligned}
\end{aligned}
$$

putting these values in (1) we get

$$
\begin{aligned}
& \text { putting these values in (1) we } \\
& \begin{aligned}
y_{41 p} & =1+\frac{4(0.1)}{3}[2(0.5674-0.6523+2(0.79791)] \\
& =1.2771
\end{aligned}
\end{aligned}
$$

Milne's corrector formula is,

$$
\begin{aligned}
& \text { Milne's corrector } \\
& y_{n+1, i}=y_{n-1}+\frac{h}{3}\left[y_{n-1}^{\prime}+4 y_{n}^{\prime}+y_{n+1}^{\prime}\right]_{8}
\end{aligned}
$$

putting $n=3$ we get:

$$
\begin{equation*}
y_{4, c}=y_{2}+\frac{h}{3}\left(y_{2}^{\prime}+4 y_{3}^{\prime}+y_{4}^{\prime}\right) \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Now, } \\
& \text { Sos } y_{401}^{\prime}=\left(y^{\prime}\right)\left(x_{4}, y_{4}\right)=\frac{b}{2}\left(1+x_{4}^{2}\right) y_{4}^{2} \\
&=\frac{1}{2}\left(1+8.4^{2}\right)(1+2771)^{2} \\
&=0.9460 \text { amor }
\end{aligned}
$$

$\therefore$ (2) becomes,

$$
\begin{aligned}
y_{4, c} & =1.12+\frac{0.1}{3}[0.6523+4(0.7979)+0.9460] \\
& =1.2797 \\
\therefore y(0.4) & =1.2797
\end{aligned}
$$

Now,

$$
\begin{aligned}
y_{4}^{\prime}=\left(y^{\prime}\right)_{\left(x_{4}, y_{4}\right)} & =\frac{1}{2}\left(1+x_{4}^{2}\right)\left(y_{4}^{2}\right) \\
& =\frac{1}{2}\left(1+(0.4)^{2}\right)(1.2797)^{2} \\
& =0.9498
\end{aligned}
$$

By applying Milne's corrector formula again

$$
\begin{aligned}
y_{4, c_{1}} & =y_{2}+\frac{h}{3}\left(y_{2}^{\prime}+4 y_{3}^{\prime}+y_{4}^{\prime}\right) \\
& =1.12+\frac{0.1}{3}(0.6523+4(0.7979)+0.9498] \\
& =1.2798
\end{aligned}
$$

Now,

$$
\begin{aligned}
y_{4}^{\prime}=\left(y^{\prime}\right)_{\left(x_{4}, y_{4}\right)} & =\frac{1}{2}\left(1+x_{4}^{2}\right) \dot{y}_{4}^{2} \\
& =\frac{1}{2}\left(1+0.4^{2}\right)(1.2798)^{2} \\
& =0.9500
\end{aligned}
$$

By applying Milne's corrector formula,

$$
\begin{aligned}
y_{4,2} & =1.12+\frac{0.1}{3}[0.6523+4(0.7979)+0.9500] \\
& =1.2798
\end{aligned}
$$

$y_{4}, c_{1}=y_{4}, c_{2}=1.2798$ is the required soln

$$
\therefore y(0.4)=1.2798
$$

Pb find $y(0.8)$ by Milne's method for the equation $y^{\prime}=y-x^{2}, y(0)=1$ obtaining the starting values by Taylor's series method.
soln: Given $y^{\prime}=y-x^{2}$
and $x_{0}=0, y_{0}=1$ and $h=0.2$
first we find the starting values $y(0.2), y(0.4)$ and $y(0.6)$ by Taylor's method.

The Taylor's algorithm is,
$y_{1}=y_{0}+\frac{h}{1!} y_{0}^{\prime}+\frac{h^{2}}{2!} y_{0}^{\prime \prime}+\frac{h^{3}}{3!} y_{0}^{\prime \prime \prime}+$
Differentiating (1) with respect to $x$ we get ,

$$
\begin{aligned}
& y^{\prime \prime} \\
& y^{\prime \prime}-2 x^{\prime \prime} \\
& =y^{\prime \prime}-2 \\
\therefore y_{0}^{\prime} & =\left(y^{\prime}\right)\left(x_{0}, y_{0}\right)=y_{0}-x_{0}^{2}=1 \\
y_{0}^{\prime \prime} & =\left(y^{\prime \prime}\right)\left(x_{0}, y_{0}\right)=y_{0}-x_{0}^{2}=1 \\
y_{0}^{\prime \prime} & =\left(y^{\prime \prime}\right)\left(x_{0}, y_{0}\right)=y_{0}^{\prime}-2 x_{0}=1 \\
y_{0}^{\prime \prime \prime} & =\left(y^{\prime \prime \prime}\right)\left(x_{0}, y_{0}\right)=y_{0}^{\prime \prime}-2=1-2=-1
\end{aligned}
$$

using this in (2) we get,
$y_{1}=1+0.2+\frac{(0.2)^{2}}{2!}+\frac{(0.2)^{3}}{6}(-1)$
(i) $y(0.2)=1.2187$

Now 1

$$
\begin{equation*}
y_{2}=y_{1}+\frac{h}{1!} y_{1}^{\prime}+\frac{h^{2}}{2!} y_{1}^{\prime \prime}+\frac{h^{3}}{3!} y_{1}^{\prime \prime \prime}+\cdots \tag{3}
\end{equation*}
$$

$$
x_{1}=x_{0}+h=0.2
$$

$\left.\left(y_{1}^{\prime}\right)=\left(y^{\prime}\right)\left(x_{1}, y_{1}\right)=y_{1}-x^{2}=1.2187-50.2\right)^{2}=1.1787$,
$\left(y_{1}^{\prime \prime}\right)=\left(y^{\prime \prime}\right)\left(x_{1}, y_{1}\right)=y_{1}^{2}-2 \dot{x}_{1}=1.1787-0.4=0.7787$
$y_{1}^{\prime \prime \prime}=\left(y^{\prime \prime \prime}\right)\left(x_{1},(y)\right)=y_{1}^{\prime \prime}-2=-1.2213$
using there values in (3) we get,
$y_{2}=1.2187+(0.2)(1.1787)+\frac{(0.2)^{2}}{2}(0.7787)+\frac{(0.2)^{3}}{6}(-1.2213)$.
(i) $y(0.4)=1.4684$

Novel $_{1} y(0.6)=y_{3}=y_{2}+\frac{h}{1!} y_{2}^{\prime}+\frac{h^{2}}{2!} y_{2}^{\prime \prime}+\frac{h^{3}}{3!} y_{2}^{\prime \prime \prime}+$
$y_{2}^{\prime}=\left(y^{\prime \prime}\right)\left(x_{2}, y_{2}\right)=y_{2}-x_{2}^{2}=1.4684-(0.4)^{2}$

$$
=1.3084
$$

$y_{2}^{\prime \prime}=\left(y^{\prime \prime}\right)_{\left(x_{2}, y_{2}\right)}=y_{2}^{\prime}-2 x_{2}=1.3084-0.8$

$$
=0.5084
$$

$\begin{aligned} y_{2}^{\prime \prime \prime}=y^{\prime \prime \prime}\left(x_{2}, y_{2}\right)=y_{2}^{\prime \prime}-2 & =0.5884-2 \\ & =-1.4916\end{aligned}$
using these values (1) (4) we get
$y_{3}=1.468+(0.2)(1.3084)+\frac{(0.2)^{2}}{2}(0.5084)+\frac{(0.2)^{3}}{6}(-1.4916)$
(i) $y(0.6)=1.7383$

Milne's predictor formula is,

$$
y_{n+1}, p=y_{n-3}+\frac{4 h}{3}\left[2 y_{n-2}^{\prime}-y_{n-1}^{\prime}+2 y_{n}^{\prime}\right]
$$

putting $n=3$ we get.

$$
y_{41 p}=y_{0}+\frac{4 h}{3}\left[2 y_{1}^{\prime}-y_{2}^{\prime}+2 y_{3}^{\prime}\right]
$$

Now I

Milne's corrector formula is',

$$
y_{n+1}, c=y_{n-1}+\frac{h}{3}\left[y_{n-1}^{\prime}+4 y_{n}^{\prime}+y_{n+1}^{\prime}\right]
$$

putting $n=3$, we get ,

$$
\begin{aligned}
& y_{4}, c=y_{2}+\frac{h}{3}\left[y_{n-1}^{\prime}+4 y_{n}^{\prime}+y_{n+1}^{\prime}\right] \\
& y_{4, c}=y_{2}+\frac{h}{3}\left[y_{2}^{\prime}+4 y_{3}^{\prime}+y_{4}^{\prime}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Now, } \\
& y_{4}^{\prime}=\left(y^{\prime}\right)\left(x_{4} y_{4}\right)=y_{4}-x_{4}^{2} \\
& \therefore=2.0916-(0.8)^{2} \\
& \therefore=1.4516 \\
& \therefore y_{41 c}=1.4684+\frac{0.2}{3}[1.3084+4(1.5223)+1.4516] \\
&=2.0583 \\
& \therefore y(0.8)=2.0583
\end{aligned}
$$

Pb using Adam's, Bashforth method find $y(4.4)$ given

$$
5 x y^{\prime}+y^{2}=2, y(4)=1, y(4.1)=1.0049 ; y(4.2)=1.0097
$$

$$
\text { and } y(4.3)=1.0143
$$

Soon' Given $y^{\prime}=\frac{2-y^{2}}{5 x}$. let $h=0.1$

$$
\begin{aligned}
& x_{0}=4, y_{0}=1, x_{1}=4.1, y, y=1.0049 \\
& x_{2}=4.2, y_{2}=1.0097, x_{3}=4.3, y_{3}=1.0143 .
\end{aligned}
$$

Adam's predictor formula is,

$$
\begin{aligned}
& \text { Adam's predictor formula is , } \\
& y_{n+11} p=y_{n}+\frac{h}{24}\left[55 y_{n}^{\prime}-59 y_{n-1}^{\prime}+37 y_{n-2}^{\prime}-9 y_{n-3}^{\prime}\right],
\end{aligned}
$$ putting $n=3$ we havel.

$$
\begin{aligned}
& y_{3}^{\prime}=\left(y^{\prime}\right)_{\left(x_{3}, y_{3}\right)}=y_{3}-x_{3}^{2}=1.738-3-(0.6)^{3} \\
& =1.5223 \\
& \therefore y_{41}=1+\frac{4(0.2)}{3}(2(1.1787)-1.3084+2(1.52 .23)) \\
& =2.0916 \text {. }
\end{aligned}
$$

$$
\begin{align*}
& y_{4}+P  \tag{1}\\
& y_{0}^{\prime}=\left(y^{\prime}\right)\left(x_{0}, y_{0}\right)=\frac{2-y_{0}^{2}}{5 x_{0}}=0.05 \\
& y_{1}^{\prime}=\left(y^{\prime}\right)\left(x_{1}, y_{1}\right)=\frac{2-y_{1}^{2}}{5 x_{1}}=0.0483 \\
& y_{2}^{\prime}=\left(y^{\prime}\right)\left(x_{2}, y_{2}\right)=\frac{2-y_{2}^{2}}{5 x_{2}}=0.0467 \\
& y_{3}^{\prime}=\left(y^{\prime}\right)\left(x_{3}, y_{3}\right)=\frac{2-y_{3}^{2}}{5 x_{3}^{3}}=0.0452
\end{align*}
$$

using the values in (1) we get,

$$
\begin{aligned}
y_{41 p} & =1.0143+\frac{0.1}{24}[55(0.0452)-59(0.0467)+37(0.0483)- \\
& =1.01413+\frac{0.1}{24}(4.2731-3.2053) \\
& =1.0186
\end{aligned}
$$

$$
\therefore y(4,4)=1.0186
$$

Adam's corrector formula is

$$
\begin{aligned}
& \text { Adam's corrector formula is } \\
& y_{n+1, c}=y_{n}+\frac{h}{24}\left(9 y_{n+1}^{\prime}+19 y_{n}^{\prime}-5 y_{n-1}^{\prime}+y_{n-2}^{\prime}\right) \\
&
\end{aligned}
$$

putting $n=3$ we get,

$$
\begin{align*}
& \text { putting } n=3  \tag{2}\\
& y_{4}, c=y_{3}+\frac{h}{24}\left[9 y_{4}^{\prime}+19 y_{3}^{\prime}-5 y_{2}^{\prime}+y_{1}^{\prime}\right] \text {. }
\end{align*}
$$

Now,

$$
y_{4}^{\prime}=\left(y^{\prime}\right)\left(x_{4}, y_{4}\right)=\frac{2-y_{4}^{2}}{5 x_{4}}=0.0437
$$

$\therefore$ (2) becomes ,

$$
\begin{aligned}
& \therefore \text { (2) becomes } \\
& \begin{aligned}
y_{4 / c} & =1.0143+\frac{0.1}{24}[9(0.0437)+19(0.0452)-5(0.0467) \\
& +(0.0483)] \\
& =1.0143+\frac{0.1}{24} \times 1.0669
\end{aligned} \\
& y(414)=1.0187
\end{aligned}
$$

D6 using Adams Bashforth method, determine $y$ (1.4) given that $y^{\prime}-x^{2} y=x^{2}, y(1)=1$ obtain the starting values from Euler's method.
Soln:- The Euler's algorithm for the differential equation.

$$
\begin{align*}
& \frac{d y}{d x}=f(x, y) \text { is given by } \\
& y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right) ; n=0,1,2,3 \tag{1}
\end{align*}
$$

Here $f(x, y)=x^{2}(1+y), x_{0}=1, y_{0}=1$ and take $h=0.1$
putting $n=0$ in (1) we get,.

$$
y_{1}=y_{0}+h f\left(x_{0}, y_{0}\right)=1+(0.1)(2)=1.2
$$

putting $n=1$ in (1) we get,

$$
\begin{aligned}
y_{2} & =y_{1}+h f\left(x_{1}, y_{1}\right)=y_{1}+h\left[x_{1}^{2}\left(1+y_{1}\right)\right] \\
& =1.2+(0.1)\left[(1.1)^{2} \times(2.2)\right] \\
& =1.2+(0.1)(2.662) \\
& =1.4662
\end{aligned}
$$

putting $n=2$ in (1) we get,

$$
\begin{aligned}
y_{3}=y_{2}+h f\left(x_{2}, y_{2}\right) & =1.4662+0.1\left[(1.2)^{2} \times 2.4662\right] \\
& =1.8213
\end{aligned}
$$

Adam's predictor formula is,

$$
y_{n+1} 1 p=y_{n}+\frac{h}{24}\left[55 y_{n}^{\prime}-59 y_{n-1}^{\prime}+37 y_{n-2}^{\prime}-9 . y_{n-3}^{\prime}\right]
$$

putting $n=3$ we get,

$$
\begin{equation*}
y_{4, P}=y_{3}+\frac{h}{24}\left[55 y_{3}^{\prime}-59 y_{2}^{\prime}+37 y_{1}^{\prime}-9 y_{0}^{\prime}\right] \tag{2}
\end{equation*}
$$

Now,

$$
\begin{aligned}
y_{0}^{\prime}=\left[x^{2}(1+y)\right]\left(x_{0}, y_{0}\right) & =2 \\
y_{1}^{\prime}=\left[x^{2}(1+y)\right]\left(x_{1}, y_{1}\right) & =(1.1)^{2}(1+1.2)=2.662 \\
y_{2}^{\prime}=\left[x^{2}(1+y)\right]\left(x_{2}, y_{2}\right) & =(1.2)^{2}(1+1.4662) \\
& =3.55513 \\
y_{3}^{\prime}=\left[x^{2}(1+y)\right]\left(x_{3}, y_{3}\right) & =(1.3)^{2}(1+1.8213) \\
& =4.7680
\end{aligned}
$$

putting there values in (2) we get,

$$
\begin{array}{r}
y_{41 p}=1.8213+\frac{0.1}{24}[55(4.768)-59(3.5513)+37(2.662)] \\
9(2)]
\end{array}
$$

$\therefore y(1.4)=2.3763$ ( $y$ predictor formula)
Adam's corrector formula is

$$
y_{n+1}-c=y_{n}+\frac{h}{24}\left[9 y_{n+1}^{\prime}+19 y_{n}^{\prime}-5 y_{n}^{\prime}+y_{n+2}^{\prime}\right]
$$

putting $n=3$ we get,

$$
\begin{equation*}
y_{4, c}=y_{3}+\frac{h}{24}\left[9 y_{4}^{\prime}+19 y_{3}^{\prime}-5 y_{2 j}^{\prime}+y_{1}^{\prime}\right] \tag{3}
\end{equation*}
$$

Now,

$$
=6.6175
$$

(3) becomes,

$$
\begin{aligned}
y_{-41 c} & =1.8213+\frac{0.1}{24}[9(6.6175)+19(4.768)-5(3.5513) \\
& +2.662] \\
& =1.8213+\frac{0.1}{24}(135.055) \\
& =2.3840 \\
\therefore y(1.4) & =2.384011
\end{aligned}
$$

using $r$ Adam's Bashforith method find $y(0.4)$ given that $y^{\prime}=1+x y, y(0)=2$.

Son:"
Adan's predictor formula for $n=3$ is

$$
\begin{align*}
& \text { Adam's predictor formula }  \tag{1}\\
& y_{41 p}=y_{3}+\frac{h}{24}\left[55 y_{3}^{\prime}-59 y_{2}^{\prime}+37 y_{1}^{\prime}-9 y_{0}^{\prime}\right] \\
& \text { Take } h=0.1
\end{align*}
$$

Here $x_{0}=0, y_{0}=2$ Take $h=0.1$
By Taylor's series method we have $x_{1}=0.1$,

$$
\begin{aligned}
& y(0.1)=y_{1}=2.1103, \\
& x_{2}=0.2, \quad y_{2}=2.243, \quad x_{3}=0.3 \text { and } y_{3}=2.4011
\end{aligned}
$$

(Refer pro (1) in 10.1)
Now,

$$
y_{0}^{\prime}=y^{\prime}\left(x_{0}, y_{0}\right)=1
$$

$111^{1 y}$

$$
y_{1}^{\prime}=1.21103 / y_{2}^{\prime}=1.4486 \text { and } y_{3}^{\prime}=1.72033
$$

using there values in (1) we get,

$$
\begin{aligned}
y_{41 p} & =2.4011+\frac{0.1}{24}[55(1.72033)-59(1.4486)+ \\
& 37(1.21103)-9] \\
& =2.5884
\end{aligned}
$$

Adam's corrector formula is,

$$
\begin{equation*}
y_{41 c}=y_{3}+\frac{h}{24}\left[9 y_{4}^{\prime}+19 y_{3}^{\prime}-5 y_{2}^{\prime}+y_{1}^{\prime}\right] \tag{2}
\end{equation*}
$$



Now. 1

$$
\begin{aligned}
y_{4}^{\prime}=\left(y^{\prime}\right)_{\left(x_{4}, y_{4}\right)} & =1+(0.4)(2.5885) \\
& =2.0354
\end{aligned}
$$

$\therefore$ (2) becomes,

$$
\begin{aligned}
y_{4, c} & =2.4011+\frac{0.1}{24}[9(2.0354)+19(1.72033) \\
& -5(1.4486)+1.21103] \\
& =2.5885
\end{aligned}
$$

Hence.

$$
y(0.4)=9.588511
$$

